
C O N T R I B U T O R S : R A M A N A R O R A , S A N J E E V A R O R A , J O A N B R U N A , N A D AV C O H E N , S I M O N D U ,

R O N G G E , S U R I YA G U N A S E K A R , C H I J I N , J A S O N L E E , T E N G Y U M A , B E H N A M N E Y S H A B U R ,

Z H A O S O N G

T H E O R Y O F D E E P
L E A R N I N G

Contents

1 Basic Setup and some math notions 13

1.1 List of useful math facts 14

1.1.1 Probability tools 14

1.1.2 Singular Value Decomposition 15

2 Basics of Optimization 17

2.1 Gradient descent 17

2.1.1 Formalizing the Taylor Expansion 18

2.1.2 Descent lemma for gradient descent 18

2.2 Stochastic gradient descent 19

2.3 Accelerated Gradient Descent 19

2.4 Local Runtime Analysis of GD 20

2.4.1 Pre-conditioners 21

3 Backpropagation and its Variants 23

3.1 Problem Setup 23

3.1.1 Multivariate Chain Rule 25

3.1.2 Naive feedforward algorithm (not efficient!) 26

3.2 Backpropagation (Linear Time) 26

3.3 Auto-differentiation 27

3.4 Notable Extensions 28

3.4.1 Hessian-vector product in linear time: Pearlmutter’s trick 29

4

4 Basics of generalization theory 31

4.0.1 Occam’s razor formalized for ML 31

4.0.2 Motivation for generalization theory 32

4.1 Some simple bounds on generalization error 32

4.2 Data dependent complexity measures 34

4.2.1 Rademacher Complexity 34

4.2.2 Alternative Interpretation: Ability to correlate with random labels 35

4.3 PAC-Bayes bounds 35

5 Advanced Optimization notions 39

6 Algorithmic Regularization 41

6.1 Linear models in regression: squared loss 42

6.1.1 Geometry induced by updates of local search algorithms 43

6.1.2 Geometry induced by parameterization of model class 46

6.2 Matrix factorization 47

6.3 Linear Models in Classification 47

6.3.1 Gradient Descent 48

6.3.2 Steepest Descent 49

6.4 Homogeneous Models with Exponential Tailed Loss 52

6.5 Induced bias in function space 55

7 Tractable Landscapes for Nonconvex Optimization 57

7.1 Preliminaries and challenges in nonconvex landscapes 58

7.2 Cases with a unique global minimum 59

7.2.1 Generalized linear model 60

7.2.2 Alternative objective for generalized linear model 61

7.3 Symmetry, saddle points and locally optimizable functions 62

7.4 Case study: top eigenvector of a matrix 64

7.4.1 Characterizing all critical points 64

7.4.2 Finding directions of improvements 66

5

8 Ultra-wide Neural Networks and Neural Tangent Kernel 69

8.1 Evolving Equation on Predictions 69

8.2 Coupling Ultra-wide Neural Networks and NTK 71

8.3 Explaining Optimization and Generalization of Ultra-wide Neural Networks via NTK
74

8.4 NTK formula for Multilayer Fully-connected Neural Network 77

8.5 NTK in Practice 79

8.6 Exercises 80

9 Inductive Biases due to Algorithmic Regularization 81

9.1 Matrix Sensing 82

9.1.1 Gaussian Sensing Matrices 84

9.1.2 Matrix Completion 87

9.2 Deep neural networks 89

9.3 Landscape of the Optimization Problem 92

9.3.1 Implicit bias in local optima 94

9.3.2 Landscape properties 96

9.4 Role of Parametrization 102

9.4.1 Related Work 102

10 Unsupervised learning: Overview 103

10.0.1 Possible goals of unsupervised learning 103

10.1 Training Objective for Density estimation: Log Likelihood 105

10.2 Variational methods 106

10.3 Autoencoders 107

10.3.1 Sparse autoencoder 107

10.3.2 Topic models 108

10.4 Variational Autoencoder (VAE) 108

10.4.1 Training VAEs 109

10.5 Main open question 110

6

11 Generative Adversarial Nets 111

11.1 Basic definitions 111

12 Representation Learning 113

12.1 Adversarial Machine Learning 113

13 Examples of Theorems, Proofs, Algorithms, Tables, Figures 115

13.1 Example of Theorems and Lemmas 115

13.2 Example of Long Equation Proofs 115

13.3 Example of Algorithms 116

13.4 Example of Figures 117

13.5 Example of Tables 118

13.6 Exercise 118

Bibliography 119

List of Figures

3.1 Why it suffices to compute derivatives with respect to nodes. 24

3.2 Multivariate chain rule: derivative with respect to node z can be com-
puted using weighted sum of derivatives with respect to all nodes
that z feeds into. 25

3.3 Vector version of above 28

6.1 Steepest descent w.r.t ‖.‖4/3: the global minimum to which steepest descent

converges to depends on η. Here w0 = [0, 0, 0], w∗‖.‖ = arg minψ∈G ‖w‖4/3

denotes the minimum norm global minimum, and w∞
η→0 denotes the solu-

tion of infinitesimal SD with η → 0. Note that even as η → 0, the expected

characterization does not hold, i.e., w∞
η→0 6= w∗‖.‖. 46

7.1 Obstacles for nonconvex optimization. From left to right: local min-
imum, saddle point and flat region. 59

8.1 Convergence rate vs. projections onto eigenvectors of the kernel ma-
trix. 75

8.2 Generalization error vs. complexity measure. 76

9.1 Optimization landscape (top) and contour plot (bottom) for a single
hidden-layer linear autoencoder network with one dimensional in-
put and output and a hidden layer of width r = 2 with dropout,
for different values of the regularization parameter λ. Left: for λ =

0 the problem reduces to squared loss minimization, which is rota-
tion invariant as suggested by the level sets. Middle: for λ > 0 the
global optima shrink toward the origin. All local minima are global,
and are equalized, i.e. the weights are parallel to the vector (±1,±1).
Right: as λ increases, global optima shrink further. 95

10.1 Visualization of Pearson’s Crab Data as mixture of two Gaussians.
(Credit: MIX homepage at McMaster University.) 104

8

10.2 Autoencoder defined using a density distribution p(h, x), where h
is the latent feature vector corresponding to visible vector x. The pro-
cess of computing h given x is called “encoding” and the reverse is
called “decoding.” In general applying the encoder on x followed
by the decoder would not give x again, since the composed transfor-
mation is a sample from a distribution. 104

13.1 A chasing sequence 117

List of Tables

13.1 We ignore the O for simplicity. The `∞/`2 is the strongest possible
guarantee, with `2/`2 coming second, `2/`1 third and exactly k-sparse
being the weaker. We also note that all [RV08, CGV13, Bou14, HR16]
obtain improved analyses of the Restricted Isometry property; the
algorithm is suggested and analyzed (modulo the RIP property) in
[BD08]. The work in [HIKP12] does not explicitly state the extension
to the d-dimensional case, but can easily be inferred from the argu-
ments. [HIKP12, IK14, Kap16, KVZ19] work when the universe size
in each dimension are powers of 2. 118

Introduction

This monograph discusses the emerging theory of deep learning. It is
based upon a graduate seminar taught at Princeton University in Fall
2019 in conjunction with a Special Year on Optimization, Statistics,
and Machine Learning at the Institute for Advanced Study.

1
Basic Setup and some math notions

This Chapter introduces the basic nomenclature. Training/test error,
generalization error etc. �Tengyu notes: Todos: Illustrate with plots: a typical training
curve and test curve

Mention some popular architectures (feed forward, convolutional, pooling, resnet, densenet) in

a brief para each.�
We review the basic notions in statistical learning theory.

• A space of possible data points X .

• A space of possible labels Y .

• A joint probability distribution D on X × Y . We assume that our
training data consist of n data points

(x(1), y(1)), . . . , (x(n), y(n)) i.i.d.∼ D ,

each drawn independently from D.

• Hypothesis space: H is a family of hypotheses, or a family of
predictors. E.g., H could be the set of all neural networks with
a fixed architecture: H = {hθ} where hθ is neural net that is
parameterized by parameters θ.

• Loss function: ` : (X ×Y)×H → R.

– E.g., in binary classification where Y = {−1,+1}, and suppose
we have a hypothesis hθ(x), then the logistic loss function for
the hypothesis hθ on data point (x, y) is

`((x, y), θ) =
1

1 + exp(−yhθ(x))
.

• Expected loss:

L(h) = E
(x,y)∼D

[`((x, y), h)] .

Recall D is the data distribution over X ×Y .

14 theory of deep learning

• Training loss (also known as empirical risk):

L̂(h) =
1
n

n

∑
i=1

`
((

x(i), y(i)
)

, h
)

,

where
(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(n), y(n)
)

are n training
examples drawn i.i.d. from D.

• Empirical risk minimizer (ERM): ĥ ∈ arg minh∈H L̂(h).

• Regularization: Suppose we have a regularizer R(h), then the
regularized loss is

L̂λ(h) = L̂(h) + λR(h)

.

�Suriya notes: Misc notations: gradient, hessian, norms�

1.1 List of useful math facts

Now we list some useful math facts.

1.1.1 Probability tools

In this section we introduce the probability tools we use in the proof.
Lemma 1.1.3, 1.1.4 and 1.1.5 are about tail bounds for random scalar
variables. Lemma 1.1.6 is about cdf of Gaussian distributions. Finally,
Lemma 1.1.7 is a concentration result on random matrices.

Lemma 1.1.1 (Markov’s inequality). If x is a nonnegative random variable
and t > 0, then the probability that x is at least t is at most the expectation
of x divided by t:

Pr[x ≥ t] ≤ E[x]/t.

Lemma 1.1.2 (Chebyshev’s inequality). Let x denote a nonnegative
random variable and t > 0, then

Pr[|x−E[x]| ≥ t] ≤ Var[x]/t2.

Lemma 1.1.3 (Chernoff bound [Che52]). Let X = ∑n
i=1 Xi, where Xi = 1

with probability pi and Xi = 0 with probability 1 − pi, and all Xi are
independent. Let µ = E[X] = ∑n

i=1 pi. Then
1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma 1.1.4 (Hoeffding bound [Hoe63]). Let X1, · · · , Xn denote n
independent bounded variables in [ai, bi]. Let X = ∑n

i=1 Xi, then we have

Pr[|X−E[X]| ≥ t] ≤ 2 exp
(
− 2t2

∑n
i=1(bi − ai)2

)
.

basic setup and some math notions 15

Lemma 1.1.5 (Bernstein inequality [Ber24]). Let X1, · · · , Xn be indepen-
dent zero-mean random variables. Suppose that |Xi| ≤ M almost surely, for
all i. Then, for all positive t,

Pr

[
n

∑
i=1

Xi > t

]
≤ exp

(
− t2/2

∑n
j=1 E[X2

j] + Mt/3

)
.

Lemma 1.1.6 (Anti-concentration of Gaussian distribution). Let
X ∼ N(0, σ2), that is, the probability density function of X is given by

φ(x) = 1√
2πσ2 e−

x2

2σ2 . Then

Pr[|X| ≤ t] ∈
(

2
3

t
σ

,
4
5

t
σ

)
.

Lemma 1.1.7 (Matrix Bernstein, Theorem 6.1.1 in [Tro15]). Consider a
finite sequence {X1, · · · , Xm} ⊂ Rn1×n2 of independent, random matrices
with common dimension n1 × n2. Assume that

E[Xi] = 0, ∀i ∈ [m] and ‖Xi‖ ≤ M, ∀i ∈ [m].

Let Z = ∑m
i=1 Xi. Let Var[Z] be the matrix variance statistic of sum:

Var[Z] = max

{∥∥∥ m

∑
i=1

E[XiX>i]
∥∥∥,
∥∥∥ m

∑
i=1

E[X>i Xi]
∥∥∥} .

Then

E[‖Z‖] ≤ (2Var[Z] · log(n1 + n2))
1/2 + M · log(n1 + n2)/3.

Furthermore, for all t ≥ 0,

Pr[‖Z‖ ≥ t] ≤ (n1 + n2) · exp
(
− t2/2

Var[Z] + Mt/3

)
.

explain these in a para
A useful shorthand will be the following: If y1, y2, . . . , ym are in-

dependent random variables each having mean 0 and taking values
in [−1, 1], then their average 1

m ∑i yi behaves like a Gaussian vari-
able with mean zero and variance at most 1/m. In other words, the
probability that this average is at least ε in absolute value is at most
exp(−ε2m).

1.1.2 Singular Value Decomposition

TBD.

2
Basics of Optimization

This chapter sets up the basic analysis framework for gradient-based
optimization algorithms and discuss how it applies to deep learning.
�Tengyu notes: Sanjeev notes:
Suggestion: when introducing usual abstractions like Lipschitz constt, Hessian norm etc. let’s

relate them concretely to what they mean in context of deep learning (noting that Lipschitz constt
is wrt the vector of parameters). Be frank about what these numbers might be for deep learning or
even how feasible it is to estimate them. (Maybe that discussion can go in the side bar.)

BTW it may be useful to give some numbers for the empirical liptschitz constt encountered in
training.

One suspects that the optimization speed analysis is rather pessimistic.�
�Suriya notes: To ground optimization to our case, we can also mention that f is often of the

either the ERM or stochastic optimization form L(w) = ∑ l(w; x, y) - it might also be useful to

mention that outside of this chapter, we typically use f as an alternative for h to denote a function

computed�
�Tengyu notes: should we use w or θ in this section?� �Suriya notes: I remembered

that we agreed on w for parameters long time back - did we we go back to theta?�

2.1 Gradient descent

Suppose we would like to optimize a continuous function f (w) over
Rd.

min
w∈Rd

f (w) .

The gradient descent (GD) algorithm is

w0 = initializaiton

wt+1 = wt − η∇ f (wt)

where η is the step size or learning rate.
One motivation or justification of the GD is that the update direc-

tion −∇ f (wt) is the steepest descent direction locally. Consider the
Taylor expansion at a point wt

f (w) = f (wt) + 〈∇ f (wt), w− wt〉︸ ︷︷ ︸
linear in w

+ · · ·

18 theory of deep learning

Suppose we drop the higher-order term and only optimize the first
order approximation within a neighborhood of wt

arg min
w∈Rd

f (wt) + 〈∇ f (wt), w− wt〉

s.t. ‖w− wt‖2 ≤ ε

Then, the optimizer of the program above is equal to w + δ where

δ = −α∇ f (wt)

for some positive scalar α. �Tengyu notes: this fact can be an exercise� In
other words, to locally minimize the first order approximation of f (·)
around wt, we should move towards the direction −∇ f (wt).

2.1.1 Formalizing the Taylor Expansion

We will state a lemma that characterizes the descent of function
values under GD. We make the assumption that the eigenvalues
of ∇2 f (w) is bounded between [−L, L] for all w. We call functions
satisfying it L-smooth functions. �Tengyu notes: missing definition of ∇2 f but

perhaps it should belong to somewhere else.� This allows us to approximate the
function using Taylor expansion accurately in the following sense:

f (w) ≤ f (wt) + 〈∇ f (wt), w− wt〉+
L
2
‖w− wt‖2

2 (2.1)

�Tengyu notes: another exercise�

2.1.2 Descent lemma for gradient descent

The following says that with gradient descent and small enough
learning rate, the function value always decreases unless the gradient
at the iterate is zero.

Lemma 2.1.1 (Descent Lemma). Suppose f is L-smooth. Then, if η <

1/(2L), we have

f (wt+1) ≤ f (wt)−
η

2
· ‖∇ f (wt)‖2

2

The proof uses the Taylor expansion. The main idea is that even
using the upper provided by equation (2.1) suffices.

Proof. We have that

f (wt+1) = f (wt − η∇ f (wt))

≤ f (wt)− 〈∇ f (wt),−η∇ f (wt)〉+
L
2
‖η2∇ f (wt)‖2

2

= f (wt)− (η − η2L/2)‖η2∇ f (wt)‖2
2

≤ η

2
· ‖∇ f (wt)‖2

2,

basics of optimization 19

where the second step follows from Eq. (2.1), and the last step follows
from η ≤ L/2.

�Tengyu notes: perhaps add a corollary saying that GD "converges" to stationary points�

2.2 Stochastic gradient descent

Motivation: Computing the gradient of a loss function could be
expensive. Recall that

L̂(h) =
1
n

n

∑
i=1

`
(
(x(i), y(i)), h

)
.

Computing the gradient ∇L̂(h) scales linearly in n. Stochastic gradi-
ent descent (SGD) estimates the gradient by sampling a mini-batch of
gradients. Especially when the gradients of examples are similar, the
estimator can be reasonably accurate. (And even if the estimator is
not accurate enough, as long as the learning rate is small enough, the
noises averages out across iterations.)

The updates: We simplify the notations a bit for the ease of exposi-
tion. We consider optimizing the function

1
n

n

∑
i=1

fi(w)

So here fi corresponds to `((xi, y(i)), h) in the statistical learning
setting. At each iteration t, the SGD algorithm first samples i1, . . . , iB

uniformly from [n], and then computes the estimated gradient using
the samples:

gS(w) =
1
B

B

∑
k=1
∇ fik (wt)

Here S is a shorthand for {i1, . . . , iB}. The SGD algorithm updates the
iterate by

wt+1 = wt − η · gS(wt).

2.3 Accelerated Gradient Descent

The basic version of accelerated gradient descent algorithm is called
heavy-ball algorithm. It has the following update rule:

wt+1 = wt − η∇ f (wt) + β(wt+1 − wt)

20 theory of deep learning

Here β(wt+1 − wt) is the so-called momentum term. The motivation
and the origin of the name of the algorithm comes from that it can be
viewed as a discretization of the second order ODE:

ẅ + aẇ + b∇ f (w) = 0

Another equivalent way to write the algorithm is

ut = −∇ f (wt) + βut−1

wt+1 = wt + ηut

Exercise: verify the two forms of the algorithm are indeed equivalent.
Another variant of the heavy-ball algorithm is due to Nesterov

ut = −∇ f (wt + β · (ut − ut−1)) + β · ut−1,

wt+1 = wt + η · ut.

One can see that ut stores a weighed sum of the all the historical
gradient and the update of wt uses all past gradient. This is another
interpretation of the accelerate gradient descent algorithm

Nesterov gradient descent works similarly to the heavy ball al-
gorithm empirically for training deep neural networks. It has the
advantage of stronger worst case guarantees on convex functions.
Both of the two algorithms can be used with stochastic gradient,
but little is know about the theoretical guarantees about stochastic
accelerate gradient descent.

2.4 Local Runtime Analysis of GD

When the iterate is near a local minimum, the behavior of gradient
descent is clearer because the function can be locally approximated
by a quadratic function. In this section, we assume for simplicity that
we are optimizing a convex quadratic function, and get some insight
on how the curvature of the function influences the convergence of
the algorithm.

We use gradient descent to optimize

min
w

1
2

w>Aw

where A ∈ Rd×d is a positive semidefinite matrix, and w ∈ Rd.
Remark: w.l.o.g, we can assume that A is a diagonal matrix. Diago-
nalization is a fundamental idea in linear algebra. Suppose A has
singular vector decomposition A = UΣU> where Σ is a diagonal
matrix. We can verify that w>Aw = ŵ>Σŵ with ŵ = U>w. In other
words, in a difference coordinate system defined by U, we are deal-
ing with a quadratic form with a diagonal matrix Σ as the coefficient.
Note the diagonalization technique here is only used for analysis.

basics of optimization 21

Therefore, we assume that A = diag(λ1, . . . , λd) with λ1 ≥ · · · ≥
λd. The function can be simplified to

f (w) =
1
2

d

∑
i=1

λiw2
i

The gradient descent update can be written as

x ← w− η∇ f (w) = w− ηΣw

Here we omit the subscript t for the time step and use the sub-
script for coordinate. Equivalently, we can write the per-coordinate
update rule

wi ← wi − ηλiwi = (1− λiηi)wi

Now we see that if η > 2/λi for some i, then the absolute value of
wi will blow up exponentially and lead to an instable behavior. Thus,
we need η . 1

max λi
. Note that max λi corresponds to the smoothness

parameter of f because λ1 is the largest eigenvalue of ∇2 f = A. This
is consistent with the condition in Lemma 2.1.1 that η needs to be
small.

Suppose for simplicity we set η = 1/(2λ1), then we see that the
convergence for the w1 coordinate is very fast — the coordinate w1 is
halved every iteration. However, the convergence of the coordinate
wd is slower, because it’s only reduced by a factor of (1− λd/(2λ1))

every iteration. Therefore, it takes O(λd/λ1 · log(1/ε)) iterations to
converge to an error ε. The analysis here can be extended to general
convex function, which also reflects the principle that:

The condition number is defined as κ = σmax(A)/σmin(A) = λ1/λd.
It governs the convergence rate of GD.

�Tengyu notes: add figure�

2.4.1 Pre-conditioners

From the toy quadratic example above, we can see that it would be
more optimal if we can use a different learning rate for different
coordinate. In other words, if we introduce a learning rate ηi = 1/λi

for each coordinate, then we can achieve faster convergence. In the
more general setting where A is not diagonal, we don’t know the
coordinate system in advance, and the algorithm corresponds to

w← w− A−1∇ f (w)

In the even more general setting where f is not quadratic, this corre-
sponds to the Newton’s algorithm

w← w−∇2 f (w)−1∇ f (w)

22 theory of deep learning

Computing the hessian ∇2 f (w) can be computational difficult
because it scales quadratically in d (which can be more than 1 million
in practice). Therefore, approximation of the hessian and its inverse is
used:

w← w− ηQ(w)∇ f (w)

where Q(w) is supposed to be a good approximation of ∇2 f (w),
and sometimes is referred to as a pre-conditioner. In practice, often
people first approximate ∇2 f (w) by a diagonal matrix and then take
its inverse. E.g., one can use diag(∇ f (w)∇ f (w>)) to approximate
the Hessian, and then use the inverse of the diagonal matrix as the
pre-conditioner.
�Tengyu notes: more on adagrad?�

3
Backpropagation and its Variants

Throughout the book we rely on computing the gradient of the loss
with respect to model parameters. For deep nets, this computation is
done with Backpropagation, a simple algorithm that uses the chain
rule of calculus. For convenience we describe this more generally as
a way to compute the sensitivity of the output of a neural network to
all of its parameters, namely, ∂ f /∂wi, where f is the output and wi

is the ith parameter. Here parameters can be edge weights or biases
associated with nodes or edges of the network. Versions of this basic
algorithm have been apparently independently rediscovered several
times from 1960s to 1980s in several fields. This chapter introduces
this algorithms as well as some advanced variants involving not just
the gradient but also the Hessian.

In most of the book, the quantity of interest is the gradient of
the training loss. But the above phrasing —computing gradient of
the output with respect to the inputs—is fully general since one
can simply add a new output node to the network that computes
the training loss from the old output. Then the quantity of interest
is indeed the gradient of this new output with respect to network
parameters.

The importance of backpropagation derives from its efficiency.
Assuming node operations take unit time, the running time is linear,
specifically, O(Network Size) = O(V + E), where V is the number
of nodes in the network and E is the number of edges. As in many
other settings in computer science —for example, sorting numbers—
the naive algorithm would take quadratic time, and that would be
hugely inefficient or even infeasible for today’s large networks.

3.1 Problem Setup

Backpropagation applies only to acyclic networks with directed
edges. (It can be heuristically applied to networks with cycles, as
sketched later.) Without loss of generality, acyclic networks can be

24 theory of deep learning

visualized as being structured in numbered layers, with nodes in the
t + 1th layer getting all their inputs from the outputs of nodes in layers
t and earlier. We use f ∈ R to denote the output of the network.
In all our figures, the input of the network is at the bottom and the
output on the top.

Our exposition uses the notion ∂ f /∂u, where f is the output and u
is a node in the net. This means the following: suppose we cut off all
the incoming edges of the node u, and fix/clamp the current values
of all network parameters. Now imagine changing u from its current
value. This change may affect values of nodes at higher levels that
are connected to u, and the final output f is one such node. Then
∂ f /∂u denotes the rate at which f will change as we vary u. (Aside:
Readers familiar with the usual exposition of back-propagation
should note that there f is the training error and this ∂ f /∂u turns out
to be exactly the "error" propagated back to on the node u.)

Claim 3.1.1. To compute the desired gradient with respect to the parameters,
it suffices to compute ∂ f /∂u for every node u.

Proof. Follows from direct application of chain rule and we prove
it by picture, namely Figure 3.1. Suppose node u is a weighted sum
of the nodes z1, . . . , zm (which will be passed through a non-linear
activation σ afterwards). That is, we have u = w1z1 + · · ·+ wnzn. By
Chain rule, we have

∂ f
∂w1

=
∂ f
∂u
· ∂u

∂w1
=

∂ f
∂u
· z1.

Figure 3.1: Why it suffices
to compute derivatives with
respect to nodes.

Hence, we see that having computed ∂ f /∂u we can compute
∂ f /∂w1, and moreover this can be done locally by the endpoints of

backpropagation and its variants 25

the edge where w1 resides.

3.1.1 Multivariate Chain Rule

Towards computing the derivatives with respect to the nodes, we
first recall the multivariate Chain rule, which handily describes the
relationships between these partial derivatives (depending on the
graph structure).

Suppose a variable f is a function of variables u1, . . . , un, which
in turn depend on the variable z. Then, multivariate Chain rule says
that

∂ f
∂z

=
n

∑
j=1

∂ f
∂uj
·

∂uj

∂z
.

To illustrate, in Figure 3.2 we apply it to the same example as we
used before but with a different focus and numbering of the nodes.

Figure 3.2: Multivariate chain
rule: derivative with respect to
node z can be computed using
weighted sum of derivatives
with respect to all nodes that z
feeds into.

We see that given we’ve computed the derivatives with respect to
all the nodes that is above the node z, we can compute the derivative
with respect to the node z via a weighted sum, where the weights
involve the local derivative ∂uj/∂z that is often easy to compute.
This brings us to the question of how we measure running time. For
book-keeping, we assume that
Basic assumption: If u is a node at level t + 1 and z is any node at level
≤ t whose output is an input to u, then computing ∂u

∂z takes unit time
on our computer.

26 theory of deep learning

3.1.2 Naive feedforward algorithm (not efficient!)

It is useful to first point out the naive quadratic time algorithm
implied by the chain rule. Most authors skip this trivial version,
which we think is analogous to teaching sorting using only quicksort,
and skipping over the less efficient bubblesort.

The naive algorithm is to compute ∂ui/∂uj for every pair of nodes
where ui is at a higher level than uj. Of course, among these V2

values (where V is the number of nodes) are also the desired ∂ f /∂ui

for all i since f is itself the value of the output node.
This computation can be done in feedforward fashion. If such

value has been obtained for every uj on the level up to and including
level t, then one can express (by inspecting the multivariate chain
rule) the value ∂u`/∂uj for some u` at level t + 1 as a weighted
combination of values ∂ui/∂uj for each ui that is a direct input to u`.
This description shows that the amount of computation for a fixed
j is proportional to the number of edges E. This amount of work
happens for all j ∈ V, letting us conclude that the total work in the
algorithm is O(VE).

3.2 Backpropagation (Linear Time)

The more efficient backpropagation, as the name suggests, computes
the partial derivatives in the reverse direction. Messages are passed
in one wave backwards from higher number layers to lower number
layers. (Some presentations of the algorithm describe it as dynamic
programming.)

Algorithm 1 Backpropagation
The node u receives a message along each outgoing edge from the
node at the other end of that edge. It sums these messages to get a
number S (if u is the output of the entire net, then define S = 1) and
then it sends the following message to any node z adjacent to it at a
lower level:

S · ∂u
∂z

Clearly, the amount of work done by each node is proportional
to its degree, and thus overall work is the sum of the node degrees.
Summing all node degrees ends up double-counting eac edge, and
thus the overall work is O(Network Size).

To prove correctness, we prove the following:

Lemma 3.2.1. At each node z, the value S is exactly ∂ f /∂z.

Proof. Follows from simple induction on depth.

backpropagation and its variants 27

Base Case: At the output layer this is true, since ∂ f /∂ f = 1.
Inductive step: Suppose the claim was true for layers t + 1 and
higher and u is at layer t, with outgoing edges go to some nodes
u1, u2, . . . , um at levels t + 1 or higher. By inductive hypothesis, node z

indeed receives ∂ f
∂uj
× ∂uj

∂z from each of uj. Thus by Chain rule,

S =
m

∑
i=1

∂ f
∂ui

∂ui
∂z

=
∂ f
∂z

.

This completes the induction and proves the Main Claim.

3.3 Auto-differentiation

Since the exposition above used almost no details about the network
and the operations that the node perform, it extends to every com-
putation that can be organized as an acyclic graph whose each node
computes a differentiable function of its incoming neighbors. This
observation underlies many auto-differentiation packages found
in deep learning environments: they allow computing the gradient
of the output of such a computation with respect to the network
parameters.

We first observe that Claim 3.1.1 continues to hold in this very gen-
eral setting. This is without loss of generality because we can view
the parameters associated to the edges as also sitting on the nodes
(actually, leaf nodes). This can be done via a simple transformation to
the network; for a single node it is shown in the picture below; and
one would need to continue to do this transformation in the rest of
the networks feeding into u1, u2, .. etc from below.

Then, we can use the messaging protocol to compute the deriva-
tives with respect to the nodes, as long as the local partial derivative
can be computed efficiently. We note that the algorithm can be imple-
mented in a fairly modular manner: For every node u, it suffices to
specify (a) how it depends on the incoming nodes, say, z1, . . . , zn and
(b) how to compute the partial derivative times S, that is, S · ∂u

∂zj
.

28 theory of deep learning

Extension to vector messages : In fact (b) can be done efficiently in
more general settings where we allow the output of each node in the
network to be a vector (or even matrix/tensor) instead of only a real
number. Here we need to replace ∂u

∂zj
· S by ∂u

∂zj
[S], which denotes the

result of applying the operator ∂u
∂zj

on S. We note that to be consistent
with the convention in the usual exposition of backpropagation,
when y ∈ Rp is a funciton of x ∈ Rq, we use ∂y

∂x to denote q × p
dimensional matrix with ∂yj/∂xi as the (i, j)-th entry. Readers might
notice that this is the transpose of the usual Jacobian matrix defined
in mathematics. Thus ∂y

∂x is an operator that maps Rp to Rq and we
can verify S has the same dimension as u and ∂u

∂zj
[S] has the same

dimension as zj.
For example, as illustrated below, suppose the node U ∈ Rd1×d3 is

a product of two matrices W ∈ Rd2×d3 and Z ∈ Rd1×d2 . Then we have
that ∂U/∂Z is a linear operator that maps Rd2×d3 to Rd1×d3 , which
naively requires a matrix representation of dimension d2d3 × d1d3.
However, the computation (b) can be done efficiently because

∂U
∂Z

[S] = W>S.

Such vector operations can also be implemented efficiently using
today’s GPUs.

Figure 3.3: Vector version of
above

3.4 Notable Extensions

Allowing weight tying: In many neural architectures, the designer
wants to force many network units such as edges or nodes to share
the same parameter. For example, in including the ubiquitous
convolutional net, the same filter has to be applied all over the
image, which implies reusing the same parameter for a large set of
edges between two layers of the net.

For simplicity, suppose two parameters a and b are supposed to
share the same value. This is equivalent to adding a new node u
and connecting u to both a and b with the operation a = u and
b = u. Thus, by chain rule,

∂ f
∂u

=
∂ f
∂a
· ∂a

∂u
+

∂ f
∂b
· ∂b

∂u
=

∂ f
∂a

+
∂ f
∂b

.

backpropagation and its variants 29

Hence, equivalently, the gradient with respect to a shared pa-
rameter is the sum of the gradients with respect to individual
occurrences.

Backpropagation on networks with loops. The above exposition assumed
the network is acyclic. Many cutting-edge applications such as
machine translation and language understanding use networks
with directed loops (e.g., recurrent neural networks). These archi-
tectures —all examples of the "differentiable computing" paradigm
below—can get complicated and may involve operations on a sepa-
rate memory as well as mechanisms to shift attention to different
parts of data and memory.

Networks with loops are trained using gradient descent as well,
using back-propagation through time which consists of expanding
the network through a finite number of time steps into an acyclic
graph, with replicated copies of the same network. These replicas
share the weights (weight tying!) so the gradient can be computed.
In practice an issue may arise with exploding or vanishing gradients,
which impact convergence. Such issues can be carefully addressed
in practice by clipping the gradient or re-parameterization tech-
niques such as long short-term memory. Recent work suggests that
careful initialization of parameters can ameliorate some of the
vanishing gradient problems.

The fact that the gradient can be computed efficiently for such
general networks with loops has motivated neural net models with
memory or even data structures (see for example neural Turing
machines and differentiable neural computer). Using gradient descent,
one can optimize over a family of parameterized networks with
loops to find the best one that solves a certain computational task
(on the training examples). The limits of these ideas are still being
explored.

3.4.1 Hessian-vector product in linear time: Pearlmutter’s trick

It is possible to generalize backpropagation to work with 2nd order
derivatives, specifically with the Hessian H which is the symmetric
matrix whose (i, j) entry is ∂2 f /∂wi∂wj. Sometimes H is also denoted
∇2 f . Just writing down this matrix takes quadratic time and memory,
which is infeasible for today’s deep nets. Surprisingly, using back-
propagation it is possible to compute in linear time the matrix-vector
product Hx for any vector x.

Claim 3.4.1. Suppose an acyclic network with V nodes and E edges has
output f and leaves z1, . . . , zm. Then there exists a network of size O(V + E)
that has z1, . . . , zm as input nodes and ∂ f

∂z1
, . . . , ∂ f

∂zm
as output nodes.

30 theory of deep learning

The proof of the Claim follows in straightforward fashion from
implementing the message passing protocol as an acyclic circuit.

Next we show how to compute ∇2 f (z) · v where v is a given fixed
vector. Let g(z) = 〈∇ f (z), v〉 be a function from Rd → R. Then by
the Claim above, g(z) can be computed by a network of size O(V + E).
Now apply the Claim again on g(z), we obtain that ∇g(z) can also be
computed by a network of size O(V + E).

Note that by construction,

∇g(z) = ∇2 f (z) · v.

Hence we have computed the Hessian vector product in network size
time.

4
Basics of generalization theory

Generalization theory gives estimates of the number of training
samples sufficient to guarantee that the the test loss of the trained
net will be almost as good as the training loss. The classic ideas
described in this chapter give very loose estimates. A later chapter
in this book describes recent attempts to come up with tighter esti-
mates of sample complexity. Generalization bounds are of interest in
understanding mathematically Why do learning algorithms generalize?

Generalization theory takes inspiration from an old philosophical
principle called Occam’s razor: given a choice between a simpler
theory and a more convoluted theory, both of which explain some
empirical observations, we should trust the simpler one. For instance,
Copernicus’s heliocentric theory of the solar system gained favor
in science because it explained known facts a more simply than the
ancient Aristotelian theory. While this makes intuitive sense, Occam’s
razor is a bit vague and hand-wavy. What makes a theory "simpler"
or "better"?

4.0.1 Occam’s razor formalized for ML

In the language of Empirical Risk Minimization from Chapter 1 the
following is the mapping from the above intuitive notions to notions
in ML. (For simplicity we focus only on supervised learning here,
and consider other settings in later chapters.)

Observations/evidence ↔ Training dataset S

theory ↔ hypothesis h

All possible theories ↔ hypothesis class H
Finding theory to fit observations ↔ Minimize training loss to find h ∈ H

Theory is good ↔ h has low test loss

Simpler theory ↔ h has shorter description

32 theory of deep learning

The notion of “shorter description”will be formalized in a variety
of ways using a complexity measure for the class H, denoted C(H), and
use it to upper bound the generalization error.

Let S be a sample of m datapoints. Empirical risk minimization
gives us ĥ = arg min L̂(h) where L̂ denotes the training loss. For
this chapter we will use L̂S to emphasize the training set. Let LD(h)
denote the expected loss of h on the full data distribution D. Then
the generalization error is defined as ∆S(h) = LD(h)− L̂S(h). Intuitively,
if generalization error is large then the hypothesis’s performance on
training sample S does not accurately reflect the performance on the
full distribution of examples, so we say it overfitted to the sample S.

The typical upperbound on generalization error 1shows that with 1 This is the format of typical generaliza-
tion bound!probability at least 1− δ over the choice of training data, the following

∆S(h) ≤ (C(H) + O(log(1/δ)))/m + Sampling error term. (4.1)

Thus to drive the generalization error down it suffices to make m
significantly larger than the “Complexity Measure”. Hence classes
with lower complexity require fewer training samples, in line with
Occam’s intuition.

4.0.2 Motivation for generalization theory

If the experiment has already decided on the architecture, algorithm
etc. to use then generalization theory is of very limited use. They can
use a held out dataset which is never seen during training. At the
end of training, evaluating average loss on this yields a valid estimate
for LD(h) for the trained hypothesis h.

Thus the hope in developing generalization theory is that it pro-
vides insights into suggesting architectures and algorithms that lead
to good generalization.

4.1 Some simple bounds on generalization error

The first one we prove is trivial, but as we shall see is also at the heart
of most other generalization bounds (albeit often hidden inside the
proof). The bound shows that if a hypothesis class contains at most
N distinct hypotheses, then log N (i.e., the number of bits needed to
describe a single hypothesis in this class) functions as a complexity
measure.

Theorem 4.1.1 (Simple union bound). If the loss function takes values
in [0, 1] and hypothesis class H contains N distinct hypotheses then with
probability at least 1− δ

∆S(h) ≤ 2
√
(log N + log(1/δ))/m.

basics of generalization theory 33

Proof. For any fixed hypothesis g imagine drawing a training sample
of size m. Then L̂S(g) is an average of i.i.d. variables and its expecta-
tion is LD(g). Concentration bounds imply that LD(g)− L̂S(g) has
a concentration property at least as strong as univariate Gaussian
N (0, 1/m). The previous statement is true for all hypotheses g in
the class, so the union bound implies that the probability is at most
N exp(−ε2m/4) that this quantity exceeds ε for some hypothesis in
the class. Since h is the solution to ERM, we conclude that when
δ ≤ N exp(−ε2m/4) then ∆S(h) ≤ ε. Simplifying and eliminating ε,
we obtain the theorem.

Of course, the union bound doesn’t apply to deep nets per se be-
cause the set of hypotheses —even after we have fixed the architecture—
consists of all vectors in Rk, where k is the number of real-valued
parameters. This is an uncountable set! However, we show it is pos-
sible to reason about the set of all nets as a finite set after suitable
discretization. Suppose we assume that the `2 norm of the param-
eter vectors is at most 1, meaning the set of all deep nets has been
identified with Ball(0, 1). (Here Ball(w, r) refers to set of all points
in Rk within distance r of w.) We assume there is a ρ > 0 such that
if w1, w2 ∈ Rk satisfy ‖w1 − w2‖2 ≤ ρ then the nets with these two
parameter vectors have essentially the same loss on every input,
meaning the losses differ by at most γ for some γ > 0. 2 (It makes 2 Another way to phrase this assump-

tion in a somewhat stronger form is
that the loss on any datapoint is a Lips-
chitz function of the parameter vector,
with Lipschitz constant at most γ/ρ.

intuitive sense such a ρ must exist for every γ > 0 since as we let
ρ→ 0 the two nets become equal.)

Definition 4.1.2 (ρ-cover). A set of points w1, w2, . . . ∈ Rk is a ρ-cover in
Rk if for every w ∈ Ball(0, 1) there is some wi such that w ∈ Ball(wi, ρ).

Lemma 4.1.3 (Existence of ρ-cover). There exists a ρ-cover of size at most
(2/ρ)k.

Proof. The proof is simple but ingenious. Let us pick w1 arbitrarily in
Ball(0, 1). For i = 2, 3, . . . do the following: arbitrarily pick any point
in Ball(0, 1) outside ∪j≤iBall(wj, ρ) and designate it as wi+1.

A priori it is unclear if this process will ever terminate. We now
show it does after at most (2/ρ)k steps. To see this, it suffices to note
that Ball(wi, ρ/2) ∩ Ball(wj, ρ/2) = ∅ for all i < j. (Because if not,
then wj ∈ Ball(wi, ρ), which means that wj could not have been
picked during the above process.) Thus we conclude that the process
must have stopped after at most

volume(Ball(0, 1))/volume(Ball(0, ρ/2))

iterations, which is at most (2/ρ)k since ball volume in Rk scales as
the kth power of the radius.

34 theory of deep learning

Finally, the sequence of wi’s at the end must be a ρ-cover be-
cause the process stops only when no point can be found outside
∪jBall(wj, ρ).

Theorem 4.1.4 (Generalization bound for normed spaces). 3 If (i) 3 As you might imagine, this generaliza-
tion bound via γ-cover is too loose, and
gives very pessimistic estimates of what
m needs to be.

hypotheses are unit vectors in Rk and (ii) every two hypotheses h1, h2 with
‖h1 − h2‖2 ≤ ρ differ in terms of loss on every datapoint by at most γ then

∆S(h) ≤ γ + 2
√

k log(2/ρ)/m.

Proof. Apply the union bound on the ρ-cover. Every other net can
have loss at most γ higher than nets in the ρ-cover.

4.2 Data dependent complexity measures

A complexity measure for hypothesis classes is a way to quantify their
“complicatedness.” It is defined to let us prove an upper bound on
the number of training samples needed to keep down the general-
ization error. Above we implicitly defined two complexity measures:
the size of the hypothesis class (assuming it is finite) and the size of
a γ-cover in it. Of course, the resulting bounds on sample complexity
were still loose.

Theorists then realized that the above simple bounds hold for
every data distribution D. In practice, it seems clear that deep nets
—or any learning method—works by being able to exploit properties
of the input distribution (e.g., convolutional structure exploits the
fact that all subpatches of images can be processed very similarly).
Thus one should try to prove some measure of complicatedness that
depends on the data distribution.

4.2.1 Rademacher Complexity

Rademacher complexity is a complexity measure that depends on
data distribution. For simplicity we will assume loss function takes
values in [0, 1].

The definition concerns the following thought experiment. Recall
that the distribution D is on labeled datapoints (x, y). For simplicity
we denote the labeled datapoint as z.

Now Rademacher Complexity 4 of hypothesis class H on a distribu- 4 Standard accounts of this often
confuse students, or falsely impress
them with a complicated proof of
Thm 4.2.1. In the standard definition,
loss terms are weighted by iid ±1
random variables. Its value is within is
±O(1/

√
m) of the one in our definition.

tion D is defined as follows where l(z, h) is loss of hypothesis h on
labeled datapoint z.

Rm,D(H) = E
S1,S2

[
1

2m
sup
h∈H

∣∣∣∣∣ ∑
z∈S1

l(z, h)− ∑
z∈S2

l(z, h)

∣∣∣∣∣
]

, (4.2)

basics of generalization theory 35

where the expectation is over S1, S2 are two iid samples (i.e., mul-
tisets) of size m each from the data distribution D. The following
theorem relates this to generalization error of the trained hypothesis.

Theorem 4.2.1. If h is the hypothesis trained via ERM using a training set
S2 of size m, then the probability (over S2) is > 1− δ, that

∆S2(h) ≤ 2Rm,D(H) + O((log(1/δ))/
√

m).

Proof. The generalization error ∆S2(h) = LD(h)− L̂S2(h), and ERM
guarantees an h that maximizes this. Imagine we pick another m iid
samples from D to get another (multi)set S1 then with probability at
least 1− δ the loss on these closely approximates LD(h):

∆S2(h) ≤ L̂S1(h)− L̂S2(h) + O((log(1/δ))/
√

m).

Now we notice that S1, S2 thus drawn are exactly like the sets drawn
in the thought experiment 5 (4.2) and the maximizer h for this expres- 5 Here hypothesis h is allowed to

depend on S2 but not S1. In the thought
experiment the supremum is over h that
can depend on both. This discrepancy
only helps the inequality, since the
latter h can achieve a larger value. Note
that the factor 2 is because of scaling of
2m in (4.2).

sion defined Rm,D. So the right hand side is at most

2Rm,D(H) + O((log(1/δ))/
√

m).

Example: We can show that the Rademacher complexity of the
set of linear classifiers (unit norm vectors U = {w|w ∈ Rd, ‖w‖2 =

1}), on a given sample S = {x1, x2, · · · , xm} (each xi ∈ Rd) is ≤
maxi∈[m] ‖xi‖2/

√
m .

4.2.2 Alternative Interpretation: Ability to correlate with random labels

Sometimes teachers explain Rademacher complexity more intuitively
as ability of classifiers in H to correlate with random labelings of the data.
This is best understood for binary classification (i.e., labels are 0/1),
and the loss function is also binary (loss 0 for correct label and 1
incorrect label). Now consider the following experiment: Pick S1, S2

as in the definition of Rademacher Complexity, and imagine flipping
the labels of S1. Now average loss on S2 is 1− L̂S2(h). Thus selecting
h to maximise the right hand side of (4.2) is like finding an h that has
low loss on S1 ∪ S2 where the labels have been flipped on S1. In other
words, h is able to achieve low loss on datasets where labels were
flipped for some randomly chosen set of half of the training points.

When the loss is not binary a similar statement still holds qualita-
tively.

4.3 PAC-Bayes bounds

These bounds due to McAllester (1999) [McA99] are in principle the
tightest, meaning previous bounds in this chapter are its subcases.

36 theory of deep learning

They are descended from an old philosophical tradition of consider-
ing the logical foundations for belief systems, which often uses Bayes’
Theorem. For example, in the 18th century, Laplace sought to give
meaning to questions like “What is the probability that the sun will rise
tomorrow?” The answer to this question depends upon the person’s
prior beliefs as well as their empirical observation that the sun has
risen every day in their lifetime.

Coming back to ML, PAC-Bayes bounds assume that experimenter
(i.e. machine learning expert) has some prior distribution P over
the hypothesis H. If asked to classify without seeing any concrete
training data, the experimenter would pick a hypothesis h according
to P (denoted h ∼ P) and classify using it h. After seeing the training
data and running computations, the experimenter’s distribution
changes6 to the posterior Q, meaning now if asked to classify they 6 To illustrate PAC-Bayes chain of

thought for deep learning, P could be
uniform distribution on all deep nets
with a certain architecture, and the
posterior is the distribution on deep
nets obtained by random initialization
followed by training on m randomly
sampled datapoints using SGD.

would pick h ∼ Q and use that. Thus the expected training loss is

E
h∼Q

[LD(h)].

Theorem 4.3.1 (PAC-Bayes bound). Consider a distribution D on the
data. Let P be a prior distribution over hypothesis class H and δ > 0. Then
with probabilty at least 1− δ, on a i.i.d. sample S of size m from D, for all
distributions Q over H (which could possibly depend on S), we have that

∆S(Q(H)) = E
h∼Q

[LD(h)]− E
h∼Q

[LS(h)] ≤

√
D(Q||P) + ln(m/δ)

2(m− 1)
,

where D(Q||P) = Eh∼Q[ln(Q(h)/P(h))] is the so-called KL-divergence7. 7 This is a measure of distance between
distributions, meaningful when P
dominates Q, in the sense that every h
with nonzero probability in Q also has
nonzero probability in P.

In other words, generalization error is upper bounded by the
square root of the KL-divergence of the distributions (plus some
terms that arise from concentration bounds). Thus, in order to min-
imize the error on the real distribution, we should try to simulta-
neously minimize the empirical error as well as the KL-divergence
between the posterior and the prior. First, lets observe that for a fixed
h, using a standard Hoeffdings inequality, we have that

Pr
S
[∆(h) > ε] ≤ exp(−2mε2). (4.3)

Roughly, this says that
√

m∆S(h) concentrates at least as strongly
as a univariate Gaussian. 8 By direct integration over Gaussian 8 Low generalization error alone does

not imply that h is any good! For
example h can have terrible loss on
D, which is faithfully captured in the
training set!

distribution this also implies that

E
S

[
exp(2(m− 1)∆(h)2)

]
≤ m

and therefore, with high probability over S,

exp(2(m− 1)∆(h)2) = O(m). (4.4)

basics of generalization theory 37

Now consider the expression (derived by working backwards from
statement of the claim)

2(m− 1) E
h∼Q

[∆(h)]2 − D(Q||P) ≤ 2(m− 1) E
h∼Q

[∆(h)2]− D(Q||P)

where the inequality is by convexity of squares. This in turn is now

2(m− 1) E
h∼Q

[∆(h)2]− D(Q||P)

= E
h∼Q

[
2(m− 1)∆(h)2 − ln(Q(h)/P(h))

]
= E

h∼Q

[
ln(exp(2(m− 1)∆(h)2) · P(h)/Q(h))

]
≤ ln

(
E

h∼Q

[
exp(2(m− 1)∆(h)2) · P(h)/Q(h))

])
,

where the last inequality uses Jensen’s inequality 9 along with the 9 Jensen’s Inequality: For a concave
function f and random variable X,
E[f (X)] ≤ f (E[X])

concavity of ln. Also, since taking expectation over h ∼ Q is effec-
tively like summing with a weighting by Q(h), we have 10

10 Often when you see KL-divergence in
machine learning, you will see this trick
being used to switch the distribution
over which expectation is taken!

ln E
h∼Q

[
exp(2(m− 1)∆(h)2) · P(h)/Q(h)

]
= ln E

h∼P

[
exp(2(m− 1)∆(h)2)

]
.

Recapping, we thus have that

2(m− 1) E
h∼Q

[∆(h)]2 − D(Q||P) ≤ ln
(

E
h∼P

[
e2(m−1)∆(h)2

])
(4.5)

Now using the fact that belief P was fixed before seeing S (i.e., is
independent of S):

E
S

[
E

h∼P

[
e2(m−1)∆(h)2

]]
= E

h∼P

[
E
S

[
e2(m−1)∆(h)2

]]
≤ m.

Thus, (1) implies that with high probability over S,

E
h∼P

[
e2(m−1)∆(h)2

]
= O(m) (4.6)

Thus, combining the above we get

2(m− 1) E
h∼Q

[∆(h)]2 − D(Q||P) ≤ O(ln (m))

which implies

E
h∼Q

[∆(h)]2 ≤ O(ln (m)) + D(Q||P)
2(m− 1)

Taking the square root on the both sides of the above Equation, then
we get

E
h∼Q

[∆(h)] ≤

√
O(ln (m)) + D(Q||P)

2(m− 1)

Thus, it completes our proof sketch.

5
Advanced Optimization notions

This chapter covers the basic 2nd order method (Newton’s method)
and then briefly discusses momentum, AdaGrad (as well as AdaDelta/RMSProp)
and Adam. Some discussion of attempts to leverage Hessian-vector
products and why they don’t appear to help.

6
Algorithmic Regularization

Large scale neural networks used in practice are highly over-parameterized
with far more trainable model parameters compared to the number
of training examples. Consequently, the optimization objectives for
learning such high capacity models have many global minima that
fit training data perfectly. However, minimizing the training loss
using specific optimization algorithms take us to not just any global
minima, but some special global minima – in this sense the choice of
optimization algorithms introduce a implicit form of inductive bias in
learning which can aid generalization.

In over-parameterized models, specially deep neural networks,
much, if not most, of the inductive bias of the learned model comes
from this implicit regularization from the optimization algorithm. For
example, early empirical work on this topic (ref. [NTS15a, NSS15,
HS97, KMN+

16, ZBH+
16a, CCS+16, DPBB17, ADG+

16, Ney17,
WRS+17, HHS17, Smi18]) show that deep models often general-
ize well even when trained purely by minimizing the training error
without any explicit regularization, and even when the networks are
highly overparameterized to the extent of being able to fit random
labels. Consequently, there are many zero training error solutions,
all global minima of the training objective, most of which generalize
horribly. Nevertheless, our choice of optimization algorithm, typically
a variant of gradient descent, seems to prefer solutions that do gen-
eralize well. This generalization ability cannot be explained by the
capacity of the explicitly specified model class (namely, the functions
representable in the chosen architecture). Instead, the optimization al-
gorithm biasing toward a “simple" model, minimizing some implicit
“regularization measure”, say R(w), is key for generalization. Un-
derstanding the implicit inductive bias, e.g. via characterizing R(w),
is thus essential for understanding how and what the model learns.
For example, in linear regression it can be shown that minimizing
an under-determined model (with more parameters than samples)
using gradient descent yields the minimum `2 norm solution (see

42 theory of deep learning

Proposition 6.1.1), and for linear logistic regression trained on lin-
early separable data, gradient descent converges in the direction of
the hard margin support vector machine solution (Theorem 6.3.2),
even though the norm or margin is not explicitly specified in the
optimization problem. In fact, such analysis showing implicit induc-
tive bias from optimization agorithm leading to generalization is
not new. In the context of boosting algorithms, (author?) [EHJT04]
and (author?) [Tel13] established connections of gradient boosting
algorithm (coordinate descent) to `1 norm minimiziation, and `1

margin maximization, respectively. minimization was observed. Such
minimum norm or maximum margin solutions are of course very
special among all solutions or separators that fit the training data,
and in particular can ensure generalization [BM03, KST09].

In this chapter, we largely present results on algorithmic regular-
ization of vanilla gradient descent when minimizing unregularized
training loss in regression and classification problem over various
simple and complex model classes. We briefly discuss general algo-
rithmic families like steepest descent and mirror descent.

6.1 Linear models in regression: squared loss

We first demonstrate the algorithmic regularization in a simple linear
regression setting where the prediction function is specified by a
linear function of inputs: fw(x) = w>x and we have the following
empirical risk minimzation objective.

L(w) =
n

∑
i=1

(
w>x(i) − y(i)

)2
. (6.1)

Such simple modes are natural starting points to build analytical
tools for extending to complex models, and such results provide intu-
itions for understaning and improving upon the empirical practices
in neural networks. Although the results in this section are speci-
fied for squared loss, the results and proof technique extend for any
smooth loss a unique finite root: where `(ŷ, y) between a prediction ŷ
and label y is minimized at a unique and finite value of ŷ [GLSS18].

We are particularly interested in the case where n < d and the ob-
servations are realizable, i.e., minw L(w) = 0. Under these conditions,
the optimization problem in eq. (6.1) is underdetermined and has
multiple global minima denoted by G = {w : ∀i, w>x(i) = y(i)}. In
this and all the following problems we consider, the goal is to answer:
Which specific global minima do different optimization algorithms reach
when minimizing L(w)?

The following proposition is the simplest illustration of the algo-
rithmic regularization phenomenon.

algorithmic regularization 43

Proposition 6.1.1. Consider gradient descent updates wt for the loss in
eq. (6.1) starting with initialization w0. For any step size schedule that
minimizes the loss L(w), the algorithm returns a special global minimizer
that implicitly also minimzes the Euclidean distance to the initialization:
wt → argmin

w∈G
‖w− w0‖2.

Proof. The key idea is in noting that that the gradients of the loss
function have a special structure. For the linear regression loss in
eq. (6.1) ∀w, ∇L(w) = ∑i(w>x(i) − y(i))x(i) ∈ span({x(i)}) - that is
the gradients are restricted to a n dimentional subspace that is inde-
pendent of w. Thus, the gradient descent updates from iniitalization
wt − w0 = ∑t′<t ηwt′ , which linearly accumulate gradients, are again
constrained to the n dimensional subspace. It is now easy to check
that there is a unique global minimizer that both fits the data (w ∈ G)
as well as is reacheable by gradient descent (w ∈ w0 + span({x(i)})).
By checking the KKT conditions, it can be verified that this unique
minimizer is given by argminw∈G ‖w− w0‖2

2.

In general overparameterized optimization problems, the char-
acterization of the implicit bias or algorithmic regulariztion is often
not this elegant or easy. For the same model class, changing the
algorithm, or changing associated hyperparameter (like step size
and initialization), or even changing the specific parameterization
of the model class can change the implicit bias. For example, (au-
thor?) [WRS+17] showed that for some standard deep learning
architectures, variants of SGD algorithm with different choices of
momentum and adaptive gradient updates (AdaGrad and Adam)
exhibit different biases and thus have different generalization per-
formance;(author?) [KMN+

16], (author?) [HHS17] and (author?)
[Smi18] study how the size of the mini-batches used in SGD influ-
ences generalization; and (author?) [NSS15] compare the bias of path-
SGD (steepest descent with respect to a scale invariant path-norm) to
standard SGD.

A comprehensive understanding of how all the algorithmic choices
affect the implicit bias is beyond the scope of this chapter (and also
the current state of research). However, in the context of this chapter,
we specifically want to highlight the role of geometry induced by
optimization algorithm and specific parameterization, which are
discussed briefly below.

6.1.1 Geometry induced by updates of local search algorithms

The relation of gradient descent to implicit bias towards minimizing
Euclidean distance to initialization is suggestive of the connection
between algorithmic regularization to the geometry of updates

44 theory of deep learning

in local search methods. In particular, gradient descent iterations
can be alternatively specified by the following equation where the
t + 1th iterate is derived by minimizing the a local (first order Taylor)
approximation of the loss while constraining the step length in
Euclidean norm.

wt+1 = argmin
w
〈w,∇L(wt)〉+

1
2η
‖w− wt‖2

2 . (6.2)

Motivated by the above connection, we can study other families of
algorithms that work under different and non-Euclidean geometries.
Two convenient families are mirror descent w.r.t. potential ψ [BT03,
NY83] and steepest descent w.r.t. general norms [BV04].

Mirror descent w.r.t. potential ψ Mirror descent updates are de-
fined for any strongly convex and differentiable potential ψ as

wt+1 = arg min
w

η 〈w,∇L(wt)〉+ Dψ(w, wt),

=⇒ ∇ψ(wt+1) = ∇ψ(wt)− η∇L(wt)
(6.3)

where Dψ(w, w′) = ψ(w)− ψ(w′)− 〈∇ψ(w′), w− w′〉 is the Bregman
divergence [Bre67] w.r.t. ψ. This family captures updates where the
geometry is specified by the Bregman divergence Dψ. Examples of
potentials ψ for mirror descent include the squared `2 norm ψ(w) =
1/2‖w‖2

2, which leads to gradient descent; the entropy potential
ψ(w) = ∑i w[i] log w[i]− w[i]; the spectral entropy for matrix valued
w, where ψ(w) is the entropy potential on the singular values of w;
general quadratic potentials ψ(w) = 1/2‖w‖2

D = 1/2 w>Dw for any
positive definite matrix D; and the squared `p norms for p ∈ (1, 2].

From eq. (6.3), we see that rather than wt (called primal iterates),
it is the ∇ψ(wt) (called dual iterates) that are constrained to the low
dimensional data manifold ∇ψ(w0) + span({x(i)}). The arguments for
gradient descent can now be generalized to get the following result.

Theorem 6.1.2. For any realizable dataset {x(i), y(i)}N
n=1, and any strongly

convex potential ψ, consider the mirror descent iterates wt from eq. (6.3) for
minimizing the empirical loss L(w) in eq. (6.1). For all initializations w0, if
the step-size schedule minimzes L(w), i.e., L(wt)→ 0, then the asymptotic
solution of the algorithm is given by

wt → arg min
w:∀i,w>x(i)=y(i)

Dψ(w, w0). (6.4)

In particular, if we start at w0 = arg minw ψ(w) (so that ∇ψ(w0) =

0), then we get to arg minw∈G ψ(w). 1 1 The analysis of Theorem 6.1.2 and
Proposition 6.1.1 also hold when
instancewise stochastic gradients are
used in place of ∇L(wt).

algorithmic regularization 45

Steepest descent w.r.t. general norms Gradient descent is also a
special case of steepest descent (SD) w.r.t a generic norm ‖.‖ [BV04]
with updates given by,

wt+1 = wt + ηt∆wt, where ∆wt = arg min
v
〈∇L(wt), v〉+ 1

2
‖v‖2. (6.5)

Examples of steepest descent include gradient descent, which is
steepest descent w.r.t `2 norm and coordinate descent, which is
steepest descent w.r.t `1 norm. In general, the update ∆wt in eq. (6.5)
is not uniquely defined and there could be multiple direction ∆wt

that minimize eq. (6.5). In such cases, any minimizer of eq. (6.5) is a
valid steepest descent update.

Generalizing gradient descent and mirror descent, we might
expect the steepest descent iterates to converge to the solution closest
to initialization in corresponding norm, arg minw∈G ‖w− w0‖. This
is indeed the case for quadratic norms ‖v‖D =

√
v>Dv when eq. 6.5

is equivalent to mirror descent with ψ(w) = 1/2‖w‖2
D. Unfortunately,

this does not hold for general norms as shown by the following
results.

Example 1. In the case of coordinate descent, which is a special
case of steepest descent w.r.t. the `1 norm, (author?) [EHJT04] studied
this phenomenon in the context of gradient boosting: obseving that
sometimes but not always the optimization path of coordinate descent
given by ∆wt+1 ∈ conv

{
−ηt

∂L(wt)
∂w[jt]

ejt : jt = argmaxj

∣∣∣ ∂L(wr)
∂w[j]

∣∣∣} , coin-
cides with the `1 regularization path given by, ŵ(λ) = arg minw L(w) +

λ‖w‖1. The specific coordinate descent path where updates average
all the optimal coordinates and the step-sizes are infinitesimal is
equivalent to forward stage-wise selection, a.k.a. ε-boosting [Fri01].
When the `1 regularization path ŵ(λ) is monotone in each of the
coordinates, it is identical to this stage-wise selection path, i.e., to a
coordinate descent optimization path (and also to the related LARS
path) [EHJT04]. In this case, at the limit of λ → 0 and t → ∞,
the optimization and regularization paths, both converge to the
minimum `1 norm solution. However, when the regularization path
ŵ(λ) is not monotone, which can and does happen, the optimization
and regularization paths diverge, and forward stage-wise selection
can converge to solutions with sub-optimal `1 norm.

Example 2. The following example shows that even for `p norms
where the ‖.‖2

p is smooth and strongly convex, the global minimum
returned by the steepest descent depends on the step-size.
Consider minimizing L(w) with dataset {(x(1) = [1, 1, 1], y(1) =

1), (x(2) = [1, 2, 0], y(2) = 10)} using steepest descent updates w.r.t.
the `4/3 norm. The empirical results for this problem in Figure 6.1
clearly show that steepest descent converges to a global minimum

46 theory of deep learning

that depends on the step-size and even in the continuous step-size
limit of η → 0, wt does not converge to the expected solution of
arg minw∈G ‖w− w0‖.

0.5

0.0

−0.5

−1.0
0

1
2

3
4

5
6

−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

winit=[0,0,0]

w *
||. ||

w∞
η→0

η= 0.01
η= 0.1
η= 0.25
η= 0.3

Figure 6.1: Steepest descent w.r.t
‖.‖4/3: the global minimum to
which steepest descent converges
to depends on η. Here w0 = [0, 0, 0],
w∗‖.‖ = arg minψ∈G ‖w‖4/3 de-
notes the minimum norm global
minimum, and w∞

η→0 denotes the
solution of infinitesimal SD with
η → 0. Note that even as η → 0, the
expected characterization does not
hold, i.e., w∞

η→0 6= w∗‖.‖.

In summary, for squared loss, we characterized the implicit bias of
generic mirror descent algorithm in terms of the potential function
and initialization. However, even in simple linear regression, for
steepest descent with general norms, we were unable to get a useful
characterization. In contrast, in Section 6.3.2, we study logistic like
strictly monotonic losses used in classification, where we can get a
characterization for steepest descent.

6.1.2 Geometry induced by parameterization of model class

In many learning problems, the same model class can be param-
eterized in multiple ways. For example, the set of linear func-
tions in Rd can be parameterized in a canonical way as w ∈ Rd

with fw(x) = w>x, but also equivalently by u, v ∈ Rd with
fu,v(x) = (u · v)>x or fu,v(x) = (u2 − v2)>x. All such equivalent
parameterizations lead to equivalent training objectives, however, in
overparemterized models, using gradient descent on different param-
eterizations lead to different induced biases in the function space. For
example, (author?) [GWB+

17?] demonstrated this phenomenon in
matrix factorization and linear convolutional networks, where these
parameterizations were shown to introduce interesting and unusual
biases towards minimizing nuclear norm, and `p (for p = 2/depth)
norm in Fourier domain, respectively. In general, these results are
suggestive of role of architecture choice in different neural network
models, and shows how even while using the same gradient descent
algorith, different geometries in the function space can be induced by

algorithmic regularization 47

the different parameterizations.

6.2 Matrix factorization

�Suriya notes: I would like to include this section here but can also move to a separate chapter.

Ideally, summarize our 2017 paper, Tengyu’s 2018 paper and Nadav’s 2019 paper. May be we

can discuss this after Nadav’s lecture?�

6.3 Linear Models in Classification

We now turn to studing classification problems with logistic or cross-
entropy type losses. We focus on binary classification problems
where y(i) ∈ {−1, 1}. Many continuous surrogate of the 0-1 loss
inlcuding logistic, cross-entropy, and exponential loss are examples of
strictly monotone loss functions ` where the behavior of the implicit
bias is fundamentally different, and as are the situations when the
implicit bias can be characterized.

We look at classification models that fit the training data {x(i), y(i)}i

with linear decision boundaries f (x) = w>x with decision rule given
by ŷ(x) = sign(f (x)). In many instances of the proofs, we also as-
sume without loss of generality that y(i) = 1 for all i, since for linear
models, the sign of y(i) can equivalently be absorbed into x(i). We
again look at unregularized empirical risk minimization objective of
the form in eq. (6.1), but now with strictly monotone losses. When
the training data {x(i), y(i)}n is not linearly separable, the empirical
objective L(w) can have a finite global minimum. However, if the
dataset is linearly separable, i.e., ∃w : ∀i, y(i)w>y(i) > 0, the empirical
loss L(w) is again ill-posed, and moreover L(w) does not have any
finite minimizer, i.e, L(w) → 0 only as ‖w‖ → ∞. Thus, for any
sequence {wt}∞

t=0, if L(wt) → 0, then wt necessarily diverges to infin-
ity rather than converge, and hence we cannot talk about limt→∞ wt.
Instead, we look at the limit direction w̄∞ = lim

t→∞
wt
‖wt‖ whenever the

limit exists. We refer to existence of this limit as convergence in direc-
tion. Note that, the limit direction fully specifies the decision rule of
the classifier that we care about.

In the remainder of the chapter, we focus on the following expo-
nential loss `(u, y) = exp(−uy). However, our asymptotic results can
be extended to loss functions with tight exponential tails, including
logistic and sigmoid losses, along the lines of (author?) [SHS17] and
(author?) [Tel13].

L(w) =
n

∑
i=1

exp(−y(i)w>x(i)). (6.6)

48 theory of deep learning

6.3.1 Gradient Descent

(author?) [SHS17] showed that for almost all linearly separable
datasets, gradient descent with any initialization and any bounded
step-size converges in direction to maximum margin separator with
unit `2 norm, i.e., the hard margin support vector machine classifier.

This characterization of the implicit bias is independent of both the
step-size as well as the initialization. We already see a fundamentally
difference from the implicit bias of gradient descent for losses with a
unique finite root (Section ??) where the characterization depended
on the initialization. The above result is rigorously proved as part of
a more general result in Theorem 6.3.2. Below is a simpler statement
and with a heuristic proof sketch intended to convey the intuition for
such results.

Theorem 6.3.1. For almost all dataset which is linearly separable, consider
gradient descent updates with any initialization w0 and any step size that
minimizes the exponential loss in eq. (6.6), i.e., L(wt) → 0. The gradient
descnet iterates then converge in direction to the `2 max-margin vector, i.e.,
limt→∞

wt
‖wt‖2

= ŵ
‖ŵ‖ , where

ŵ = argmin
w
‖w‖2 s.t. ∀i, w>x(i)y(i) ≥ 1. (6.7)

Without loss of generality assume that ∀i, y(i) = 1 as the sign for
linear models can be absobed into x(i).

Proof Sketch We first understand intuitively why an exponential tail
of the loss entail asymptotic convergence to the max margin vector:
examine the asymptotic regime of gradient descent in when the
exponential loss is minimized, as we argued earlier, this required that
∀i : w>x(i) → ∞. Suppose wt/ ‖wt‖2 converges to some limit w∞, so
we can write wt = g(t)w∞ + ρ(t) such that g(t) → ∞, ∀i, w>∞x(i) > 0,
and limt→∞ ρ(t)/g(t) = 0. The gradients at wt are given by:

−∇L(w) =
n

∑
i=1

exp
(
−w>x(i)

)
x(i)

=
n

∑
i=1

exp
(
−g(t)w>∞x(i)

)
exp

(
−ρ(t)>x(i)

)
xn .

(6.8)

As g(t) → ∞ and the exponents become more negative, only those
samples with the largest (i.e., least negative) exponents will con-
tribute to the gradient. These are precisely the samples with the
smallest margin argminiw

>
∞x(i), aka the “support vectors”. The accu-

mulation of negative gradient, and hence wt, would then asymptoti-
cally be dominated by a non-negative linear combination of support
vectors. These are precisely the KKT conditions for the SVM problem

algorithmic regularization 49

(eq. 6.7). Making these intuitions rigorous constitutes the bulk of
the proof in (author?) [SHS17], which uses a proof technique very
different from that in the following section (Section 6.3.2).

6.3.2 Steepest Descent

. Recall that gradient descent is a special case of steepest descent
(SD) w.r.t a generic norm ‖ · ‖ with updates given by eq. (6.5). The
optimality condition of ∆wt in eq. (6.5) requires

〈∆wt,−∇L(wt)〉=‖∆wt‖2=‖∇L(wt)‖2
?., (6.9)

where ‖x‖? = sup‖y‖≤1 x>y is the dual norm of ‖ · ‖. Examples of
steepest descent include gradient descent, which is steepest descent
w.r.t `2 norm and greedy coordinate descent (Gauss-Southwell se-
lection rule), which is steepest descent w.r.t `1 norm. In general, the
update ∆wt in eq. (6.5) is not uniquely defined and there could be
multiple direction ∆wt that minimize eq. (6.5). In such cases, any
minimizer of eq. (6.5) is a valid steepest descent update and satisfies
eq. (6.9).

In the preliminary result in Theorem 6.3.1, we proved the limit
direction of gradient flow on the exponential loss is the `2 max-
margin solution. In the following theorem, we show the natural
extension of this to all steepest descent algorithms.

Theorem 6.3.2. For any separable dataset {xi, yi}n
i=1 and any norm ‖·‖,

consider the steepest descent updates from eq. (6.9) for minimizing L(w)

in eq. (6.6) with the exponential loss `(u, y) = exp(−uy). For all initial-
izations w0, and all bounded step-sizes satisfying ηt ≤ min{η+, 1

B2L(wt)
},

where B := maxn ‖xn‖? and η+ < ∞ is any finite number, the iterates wt

satisfy the following,

lim
t→∞

min
n

yi 〈wt, yi〉
‖wt‖

= max
w:‖w‖≤1

min
n

yi 〈w,xi〉 =: γ.

In particular, if there is a unique maximum-‖ · ‖ margin solution w∗ =

arg max‖w‖≤1 mini yi 〈w, xi〉, then the limit direction satisfies limt→∞
wt
‖wt‖ =

w∗.

A special case of Theorem 6.3.2 is for steepest descent w.r.t. the `1

norm, which as we already saw corresponds to greedy coordinate
descent. More specifically, coordinate descent on the exponential
loss with exact line search is equivalent to AdaBoost [SF12], where
each coordinate represents the output of one “weak learner”. In-
deed, initially mysterious generalization properties of boosting have
been understood in terms of implicit `1 regularization [SF12], and
later on AdaBoost with small enough step-size was shown to con-
verge in direction precisely to the maximum `1 margin solution

50 theory of deep learning

[ZY+
05, SSS10, Tel13], just as guaranteed by Theorem 6.3.2. In fact,

(author?) [Tel13] generalized the result to a richer variety of expo-
nential tailed loss functions including logistic loss, and a broad class
of non-constant step-size rules. Interestingly, coordinate descent
with exact line search (AdaBoost) can result in infinite step-sizes,
leading the iterates to converge in a different direction that is not a
max-`1-margin direction [RDS04], hence the bounded step-sizes rule
in Theorem 6.3.2.

Theorem 6.3.2 is a generalization of the result of (author?) to
steepest descent with respect to other norms, and our proof follows
the same strategy as (author?). We first prove a generalization of
the duality result of (author?) [SSS10]: if there is a unit norm linear
separator that achieves margin γ, then ‖∇L(w)‖? ≥ γL(w) for all
w. By using this lower bound on the dual norm of the gradient,
we are able to show that the loss decreases faster than the increase
in the norm of the iterates, establishing convergence in a margin
maximizing direction.

In the rest of this section, we discuss the proof of Theorem 6.3.2.
The proof is divided into three steps:

1. Gradient domination condition: For all norms and any w, ‖∇L(w)‖? ≥
γL(w)

2. Optimization properties of steepest descent such as decrease of
loss function and convergence of the gradient in dual norm to
zero.

3. Establishing sufficiently fast convergence of L(wt) relative to the
growth of ‖wt‖ to prove the Theorem.

Proposition 6.3.3. Gradient domination condition (Lemma 10 of [GLSS18])
Let γ = max‖w‖≤1 mini yix>i w. For all w,

‖∇L(w)‖? ≥ γL(w).

Next, we establish some optimization properties of the steepest
descent algorithm including convergence of gradient norms and loss
value.

Proposition 6.3.4. (Lemma 11 and 12 of (author?) [GLSS18]) Consider
the steepest descent iterates wt on (6.6) with stepsize η ≤ 1

B2L(w0)
, where

B = maxi ‖xi‖?. The following holds:

1. L(wt+1) ≤ L(wt).

2. ∑∞
t=0 ‖∇L(wt)‖2 < ∞ and hence ‖∇L(wt)‖? → 0.

algorithmic regularization 51

3. L(wt)→ 0 and hence w>t xi → ∞.

4. ∑∞
t=0 ‖∇L(wt)‖? = ∞.

Given these two Propositions, the proof proceeds in two steps. We
first establish that the loss converges to zero sufficiently quickly to
lower bound the unnormalized margin mini w>t xi. Next, we upper
bound ‖wt‖ . By dividing the lower bound in the first step by the
upper bound in the second step, we can lower bound the normalized
margin, which will complete the proof.

Proof of Theorem 6.3.2. Step 1: Lower bound the unnormalized mar-
gin. First, we establish the loss converges sufficiently quickly. Define
γt = ‖∇L(wt)‖?. From Taylor’s theorem,

L(wt+1) ≤

L(wt) + ηt 〈∇L(wt), ∆wt〉+ sup
β∈(0,1)

η2
t

2
∆wt

>∇2L (wt + βηt∆wt)∆wt

(a)
≤ L(wt)− ηt ‖∇L(wt)‖2

? +
η2

t B2

2
sup

β∈(0,1)
L (wt + βηt∆wt) ‖∆wt‖2

(b)
≤ L(wt)− ηt ‖∇L(wt)‖2

? +
η2

t B2

2
L(wt) ‖∆wt‖2

(6.10)

where (a) uses v>∇2L(w)v ≤ L(w)B2‖v‖2 and (b) uses Proposition
6.3.4 part 1 and convexity to show supβ∈(0,1) L (wt + βηt∆wt) ≤
L(wt).

From eq . 6.10, using γt = ‖∇L(wt)‖? = ‖∆wt‖, we have that

L(wt+1) ≤ L(wt)− ηγ2
t +

η2B2L(wt)γ2
t

2

= L(wt)

[
1− ηγ2

t
L(wt)

+
η2B2γ2

t
2

]
(a)
≤ L(wt) exp

(
− ηγ2

t
L(wt)

+
η2B2γ2

t
2

)
(b)
≤ L(w0) exp

(
−∑

u≤t

ηuγ2
u

L(wu)
+ ∑

u≤t

η2B2γ2
u

2

)
,

(6.11)

where we get (a) by using (1 + x) ≤ exp(x), and (b) by recursing the
argument.

Next, we lower bound the unnormalized margin. From eq. (6.11),

52 theory of deep learning

we have,

max
n∈[N]

exp(− 〈wt+1, xn〉) ≤ L(w(t+1))

≤ L(w0) exp

(
−∑

u≤t

ηγ2
u

L(wu)
+ ∑

u≤t

η2B2γ2
u

2

)
(6.12)

By applying − log,

min
n∈[N]

〈wt+1, xn〉 ≥ ∑
u≤t

ηγ2
u

L(wu)
− ∑

u≤t

η2B2γ2
u

2
− log L(w0). (6.13)

Step 2: Upper bound ‖wt+1‖. Using ‖∆wu‖ = ‖∇L(wu)‖? = γu,
we have,

‖wt+1‖ ≤ ‖w0‖+ ∑
u≤t

η ‖∆wu‖ ≤ ‖w0‖+ ∑
u≤t

ηγu. (6.14)

To complete the proof, we simply combine Equations (6.13) and
(6.14) to lower bound the normalized margin.

〈wt+1, xn〉
‖wt+1‖

≥
∑u≤t

ηγ2
u

L(wu)

∑u≤t ηγu + ‖w0‖
−

∑u≤t
η2B2γ2

u
2 + log L(w0)

‖wt+1‖

 .

:= (I) +(I I). (6.15)

For term (I), from Proposition 6.3.3, we have γu = ‖∇L(wu)‖? ≥
γL(wu). Hence the numerator is lower bounded ∑u≤t

ηγ2
u

L(wu)
≥

γ ∑u≤t ηγu. We have

∑u≤t
ηγ2

u
L(wu)

∑u≤t ηγu + ‖w0‖
≥ γ

∑u≤t ηγu

∑u≤t ηγu + ‖w0‖
→ γ, (6.16)

using ∑u≤t ηγu → ∞ and ‖w0‖ < ∞ from Proposition 6.3.4.

For term (II), log L(w0) < ∞ and ∑u≤t
η2B2γ2

u
2 < ∞ using Proposi-

tion 6.3.3. Thus (I I)→ 0.
Using the above in Equation (6.15), we obtain

lim
t→∞

w>t+1xi

‖wt+1‖
≥ γ := max

‖w‖≤1
min

i

w>xi
‖w‖ .

6.4 Homogeneous Models with Exponential Tailed Loss

�Suriya notes: Jason: I think we should give Kaifengs’ proof here. Its more general and

concurrent work.� In this section, we consider the asymptotic behavior of

algorithmic regularization 53

gradient descent when the prediction function is homogeneous in the
parameters. Consider the loss

L(w) =
n

∑
i=1

exp(−yi fi(w)), (6.17)

where fi(cw) = cα fi(w) is α-homogeneous. Typically, fi(w) is the
output of the prediction function such as a deep network. Similar
to the linear case in Section ??, there is a related maximum margin
problem. Define the optimal margin as γ = max‖w‖2=1 mini yi fi(w).
The associated non-linear margin maximization is given by the
following non-convex constrained optimization:

min ‖w‖2 st yi fi(w) ≥ γ. (Max-Margin)

Analogous to Section ??, we expect that gradient descent on Equa-
tion (6.17) converges to the optimum of the Max-Margin problem
(Max-Margin). However, the max-margin problem itself is a con-
strained non-convex problem, so we cannot expect to attain a global
optimum. Instead, we show that gradient descent iterates converge to
first-order stationary points of the max-margin problem.

Definition 6.4.1 (First-order Stationary Point). The first-order optimality
conditions of Max-Margin are:

1. ∀i, yi fi(w) ≥ γ

2. There exists Lagrange multipliers λ ∈ RN
+ such that w = ∑n λn∇ fn(w)

and λn = 0 for n /∈ Sm(w) := {i : yi fi(w) = γ}, where Sm(w) is the
set of support vectors .

We denote byW? the set of first-order stationary points.

Let wt be the iterates of gradient flow (gradient descent with
step-size tending to zero). Define `it = exp(− fi(wt)) and `t be the
vector with entries `i(t). The following two assumptions assume
that the limiting direction wt

‖wt‖ exist and the limiting direction of

the losses `t
‖`t‖1

exist. Such assumptions are natural in the context of
max-margin problems, since we want to argue that wt converges to
a max-margin direction, and also the losses `t/‖`t‖1 converges to an
indicator vector of the support vectors. We will directly assume these
limits exist, though this is proved in 2. 2

Assumption 6.4.2 (Smoothness). We assume fi(w) is a C2 function.

Assumption 6.4.3 (Asymptotic Formulas). Assume that L(wt)→ 0, that
is we converge to a global minimizer. Further assume that lim

t→∞
wt
‖wt‖2

and

54 theory of deep learning

lim
t→∞

`t
‖`t‖1

exist. Equivalently,

`nt = htan + htεnt (6.18)

wt = gtw̄ + gtδt, (6.19)

with ‖a‖1 = 1, ‖w̄‖2 = 1, lim
t→∞

h(t) = 0, lim
t→∞

εnt = 0, and lim
t→∞

δtt = 0.

Assumption 6.4.4 (Linear Independence Constraint Qualification).
Let w be a unit vector. LICQ holds at w if the vectors {∇ fi(w)}i∈Sm(w) are
linearly independent.

Constraint qualification allow the first-order optimality conditions
of Definition 6.4.1 to be a necessary condition for optimality. Without
constraint qualifications, event he global optimum may not satisfy the
optimality conditions.

For example in linear SVM, LICQ is ensured if the support vectors
xi are linearly independent then LICQ holds. For data sampled from
an absolutely continuous distribution, the linear SVM solution will
always have linearly independent support vectors.

Theorem 6.4.5. Define w̄ = limt→∞
wt
‖wt‖ . Under Assumptions 6.4.2, 6.4.3,

and 6.4.4, w̄ ∈ W is a first-order stationary point of (Max-Margin).

Proof. Define S = {i : fi(w̄) = γ}, where γ is the optimal margin
attainable by a unit norm w.

Lemma 6.4.6. Under the setting of Theorem 6.4.5,

∇ fi(wt) = ∇ fi(gtw̄) + O(Bgα−1
t ‖δt‖). (6.20)

For i ∈ S , the second term is asymptotically negligible as a function of t,

∇ fi(wt) = ∇ fi(gtw̄) + o(∇ fi(gtw̄)).

Lemma 6.4.7. Under the conditions of Theorem 6.4.5, ai = 0 for i 6∈ S.

From the gradient flow dynamics,

ẇ(t) = ∑
i

exp(− fi(wt))∇ fi(wt)

= ∑
i
(htai + htεit)(∇ fi(gtw̄) + ∆it,

where ∆i(t) =
∫ s=1

s=0 ∇
2 fi(gtw̄ + sgtδt)gtδtds. By expanding and using

ai = 0 for n 6∈ S (Lemma 6.4.7) ,

ẇt = ∑
i∈S

htai∇ fi(gtw)︸ ︷︷ ︸
I

+ ht ∑
i∈S

ai∆it︸ ︷︷ ︸
I I

+ ht ∑
i

εit∇ fi(gtw̄)︸ ︷︷ ︸
I I I

+∑
i

htεit∆it︸ ︷︷ ︸
IV

algorithmic regularization 55

Via Assumption 6.4.4, term I = Ω(gα−1
t ht) and from Lemma 6.4.6

, I I = o(I). Using these, the first term I is the largest and so after
normalizing,

ẇt

‖ẇt‖
= ∑

i∈S
ai∇ fi(gtw̄) + o(1). (6.21)

Since limt
wt
‖wt‖ = limt

ẇt
‖wt‖ [GLSS18], then

lim
t→∞

wt

‖wt‖
= ∑

i∈S
∇ fi(gtw̄). (6.22)

Thus we have shown w satisfies the first-order optimality condition of
Definition 6.4.1.

6.5 Induced bias in function space

�Suriya notes: Jason: can you introduce the idea of induced biases and give special results for

linear convnets, any relevant results from yours+tengyu’s margin paper, and infinite width 2 layer

ReLU network?�

7
Tractable Landscapes for Nonconvex Optimization

Deep learning relies on optimizing complicated, nonconvex loss
functions. Finding the global minimum of a nonconvex objective is
NP-hard in the worst case. However in deep learning simple algo-
rithms such as stochastic gradient descent often the objective value to
zero or near-zero at the end. This chapter focuses on the optimization
landscape defined by a nonconvex objective and identifies properties
of these landscapes that allow simple optimization algorithms to find
global minima (or near-minima). These properties thus far apply to
simpler nnonconvex problems than deep learning, and it is open how
to analyse deep learning with such landscape analysis.

Warm-up: Convex Optimization To understand optimization land-
scape, one can first look at optimizing a convex function. If a function
f (w) is convex, then it satisfies many nice properties, including

∀α ∈ [0, 1], w, w′, f (αw + (1− α)w′) ≤ α f (w) + (1− α) f (w′). (7.1)

∀w, w′, f (w′) ≥ f (w) + 〈∇ f (w), w′ − w〉. (7.2)

These equations characterize important geometric properties of
the objective function f (w). In particular, Equation (7.1) shows that
all the global minima of f (w) must be connected, because if w, w′

are both globally optimal, anything on the segment αw + (1− α)w′

must also be optimal. Such properties are important because it gives
a characterization of all the global minima. Equation (7.2) shows that
every point with ∇ f (w) = 0 must be a global minimum, because
for every w′ we have f (w′) ≥ f (w) + 〈∇ f (w), w′ − w)〉 ≥ f (w).
Such properties are important because it connects a local property
(gradient being 0) to global optimality.

In general, optimization landscape looks for properties of the
objective function that characterizes its local/global optimal points
(such as Equation (7.1)) or connects local properties with global
optimality (such as Equation (7.2)).

58 theory of deep learning

7.1 Preliminaries and challenges in nonconvex landscapes

We have been discussing global/local minimum informally, here we
first give a precise definition:

Definition 7.1.1 (Global/Local minimum). For an objective function
f (w) : Rd → R, a point w∗ is a global minimum if for every w we have
f (w∗) ≤ f (w). A point w is a local minimum/maximum if there exists
a radius ε > 0 such that for every ‖w′ − w‖2 ≤ ε, we have f (w) ≤ f (w′)
(f (w) ≥ f (w′) for local maximum). A point w with ∇ f (w) = 0 is called a
critical point, for smooth functions all local minimum/maximum are critical
points.

Throughout the chapter, we will always work with functions
whose global minimum exists, and use f (w∗) to denote the optimal
value of the function1. For simplicity we focus on optimization 1 Even though there might be multiple

global minima w∗, the value f (w∗) is
unique by definition.

problems that do not have any constraints (w ∈ Rd). It is possible to
extend everything in this chapter to optimization with nondegenerate
equality constraints, which would require definitions of gradient and
Hessians with respect to a manifold and is out of the scope for this
book.

Spurious local minimum The first obstacle in nonconvex optimization
is a spurious local minimum.

Definition 7.1.2 (Spurious local minimum). For an objective function
f (w) : Rd → R, a point w is a spurious local minimum if it is a local
minimum, but f (w) > f (w∗).

Many of the simple optimization algorithms are based on the
idea of local search, thus are not able to escape from a spurious local
minimum. As we will later see, many noncovex objectives do not
have spurious local minima.

Saddle points The second obstacle in nonconvex optimization is a
saddle point. The simplest example of a saddle point is f (w) = w2

1 − w2
2

at the point w = (0, 0). In this case, if w moves along direction
(±1, 0), the function value increases; if w moves along direction
(0,±1), the function value decreases.

Definition 7.1.3 (Saddle point). For an objective function f (w) : Rd → R,
a point w is a saddle point if ∇ f (w) = 0, and for every radius ε > 0, there
exists w+, w− within distance ε of w such that f (w−) < f (w) < f (w+).

This definition covers all cases but makes it very hard to verify
whether a point is a saddle point. In most cases, it is possible to tell
whether a point is a saddle point, local minimum or local maximum
based on its Hessian.

tractable landscapes for nonconvex optimization 59

Claim 7.1.4. For an objective function f (w) : Rd → R and a critical point
w (∇ f (w) = 0), we know

• If ∇2 f (w) � 0, w is a local minimum.

• If ∇2 f (w) ≺ 0, w is a local maximum.

• If ∇2 f (w) has both a positive and a negative eigenvalue, w is a saddle
point.

These criteria are known as second order sufficient conditions
in optimization. Intuitively, one can prove this claim by looking at
the second-order Taylor expansion. The three cases in the claim do
not cover all the possible Hessian matrices. The remaining cases are
considered to be degenerate, and can either be a local minimum,
local maximum or a saddle point2. 2 One can consider the w = 0 point of

functions w4,−w4, w3, and it is a local
minimum, maximum and saddle point
respectively.Flat regions Even if a function does not have any spurious local

minima or saddle point, it can still be nonconvex, see Figure 7.1. In
high dimensions such functions can still be very hard to optimize.
The main difficulty here is that even if the norm ‖∇ f (w)‖2 is small,
unlike convex functions one cannot conclude that f (w) is close to
f (w∗). However, often in such cases one can hope the function f (w)

to satisfy some relaxed notion of convexity, and design efficient
algorithms accordingly. We discuss one of such cases in Section 7.2.

Figure 7.1: Obstacles for non-
convex optimization. From left
to right: local minimum, saddle
point and flat region.

7.2 Cases with a unique global minimum

We first consider the case that is most similar to convex objectives.
In this section, the objective functions we look at have no spurious
local minima or saddle points. In fact, in our example the objective
is only going to have a unique global minimum. The only obstacle
in optimizing these functions is that points with small gradients may
not be near-optimal.

The main idea here is to identify properties of the objective and
also a potential function, such that the potential function keeps de-

60 theory of deep learning

creasing as we run simple optimization algorithms such as gradient
descent. Many properties were used in previous literature, including

Definition 7.2.1. Let f (w) be an objective function with a unique global
minimum w∗, then

Polyak-Lojasiewicz f satisfies Polyak-Lojasiewicz if there exists a value
µ > 0 such that for every w, ‖∇ f (x)‖2

2 ≥ µ(f (w)− f (w∗)).

weakly-quasi-convex f is weakly-quasi-convex if there exists a value τ > 0
such that for every w, 〈∇ f (w), w− w∗〉 ≥ µ(f (w)− f (w∗)).

Restricted Secant Inequality (RSI) f satisfies RSI if there exists a value τ

such that for every w, 〈∇ f (w), w− w∗〉 ≥ µ‖w− w∗‖2
2.

Any one of these three properties can imply fast convergence
together with some smoothness of f .

Claim 7.2.2. If an objective function f satisfies one of Polyak-Lojasiewicz,
weakly-quasi-convex or RSI, and f is smooth3, then gradient descent 3 Polyak-Lojasiewicz and RSI requires

standard smoothness definition as in
Equation (2.1), weakly-quasi-convex
requires a special smoothness property
detailed in [HMR18].

converges to global minimum with a geometric rate4.

4 The potential functions for Polyak-
Lojasiewicz and weakly-quasi-convex
are function value f ; potential function
for RSI is the squared distance ‖w −
w∗‖2

2

Intuitively, Polyak-Lojasiewicz condition requires that the gradient
to be nonzero for any point that is not a global minimum, therefore
one can always follow the gradient and further decrease the function
value. This condition can also work in some settings when the global
minimum is not unique. Weakly-quasi-convex and RSI are similar
in the sense that they both require the (negative) gradient to be
correlated with the correct direction - direction from the current point
w to the global minimum w∗.

In this section we are going to use generalized linear model as an
example to show how some of these properties can be used.

7.2.1 Generalized linear model

In generalized linear model (also known as isotonic regression)
[KS09, KKSK11], the input consists of samples {x(i), y(i)} that are
drawn from distribution D, where (x, y) ∼ D satisfies

y = σ(w>∗ x) + ε. (7.3)

Here σ : R → R is a known monotone function, ε is a noise that
satisfies E [ε|x] = 0, and w∗ is the unknown parameter that we are
trying to learn.

In this case, it is natural to consider the following expected loss

L(w) =
1
2

E
(x,y)∼D

[
(y− σ(w>x)2

]
. (7.4)

tractable landscapes for nonconvex optimization 61

Of course, in practice one can only access the training loss which is
an average over the observed {x(i), y(i)} pairs. For simplicity we work
with the expected loss here. The difference between the two losses
can be bounded using techniques in Chapter ??.

Generalized linear model can be viewed as learning a single
neuron where σ is its nonlinearity.

We will give high level ideas on how to prove properties such as
weakly-quasi-convex or RSI for generalized linear model. First we
rewrite the objective as:

L(w) =
1
2

E
(x,y)∼D

[
(y− σ(w>x)2

]
=

1
2

E
(x,ε)

[
(ε + σ(w>∗ x)− σ(w>x))2

]
.

=
1
2

E
ε

[
ε2
]
+

1
2

E
x

[
(σ(w>∗ x)− σ(w>x)2

]
.

Here the second equality uses Definition of the model (Equation
(7.3)), and the third equality uses the fact that E [ε|x] = 0 (so there
are no cross terms). This decomposition is helpful as the first term
1
2 Eε

[
ε2] is now just a constant.

Now we can take the derivative of the objective:

∇L(w) = E
x

[
(σ(w>x)− σ(w>∗ x))σ′(w>x)x

]
.

Notice that both weakly-quasi-convex and RSI requires that the
objective to be correlated with w− w∗, so we compute

〈∇L(w), w− w∗〉 = E
x

[
(σ(w>x)− σ(w>∗ x))σ′(w>x)(w>x− w>∗ x)

]
.

The goal here is to show that the RHS is bigger than 0. A simple
way to see that is to use the intermediate value theorem: σ(w>x)−
σ(w>∗ x) = σ′(ξ)(w>x − w>∗ x), where ξ is a value between w>x and
w>∗ x. Then we have

〈∇L(w), w− w∗〉 = E
x

[
σ′(ξ)σ′(w>x)(w>x− w>∗ x)2

]
.

In the expectation in the RHS, both derivatives (σ′(ξ), σ′(w>x)) are
positive as σ is monotone, and (w>x− w>∗ x)2 is clearly nonnegative.
By making more assumptions on σ and the distribution of x, it is
possible to lowerbound the RHS in the form required by either
weakly-quasi-convex or RSI. We leave this as an exercise.

7.2.2 Alternative objective for generalized linear model

There is another way to find w∗ for generalized linear model that is
more specific to this setting. In this method, one estimate a different

62 theory of deep learning

“gradient” for generalized linear model:

∇g(w) = E
x,y

[
(σ(w>x)− y)x

]
= E

x

[
(σ(w>x)− σ(w>∗ x))x

]
. (7.5)

The first equation gives a way to estimate this “gradient”. The main
difference here is that in the RHS we no longer have a factor σ′(w>x)
as in ∇L(w). Of course, it is unclear why this formula is the gradi-
ent of some function g, but we can construct the function g in the
following way:

Let τ(x) be the integral of σ(x): τ(x) =
∫ x

0 σ(x′)dx′. Define
g(w) := Ex

[
τ(w>x)− σ(w>∗ x)w>x

]
. One can check ∇g(w) is indeed

the function in Equation (7.5). What’s very surprising is that g(w) is
actually a convex function with ∇g(w∗) = 0! This means that w∗ is
a global minimum of g and we only need to follow ∇g(w) to find it.
Nonconvex optimization is unnecessary here.

Of course, this technique is quite special and uses a lot of structure
in generalized linear model. However similar ideas were also used in
5 to learn a single neuron. In general, when one objective is hard to 5

analyze, it might be easier to look for an alternative objective that has
the same global minimum but easier to optimize.

7.3 Symmetry, saddle points and locally optimizable functions

In the previous section, we saw some conditions that allow noncon-
vex objectives to be optimized efficiently. However, such conditions
often do not apply to neural networks, or more generally any func-
tion that has some symmetry properties.

More concretely, consider a two-layer neural network hθ(x) : Rd →
R. The parameters θ is (w1, w2, ..., wk) where wi ∈ Rd represents the
weight vector of the i-th neuron. The function can be evaluated as
hθ(x) = ∑k

i=1 σ(〈wi, x〉), where σ is a nonlinear activation function.
Given a dataset (x(1), y(1)), . . . , (x(n), y(n)) i.i.d.∼ D , one can define the
training loss and expected loss as in Chapter 1. Now the objective
for this neural network f (θ) = L(hθ) = E(x,y)∼D [`((x, y), hθ)]

has permutation symmetry. That is, for any permutation π(θ) that
permutes the weights of the neurons, we know f (θ) = f (π(θ)).

The symmetry has many implications. First, if the global mini-
mum θ∗ is a point where not all neurons have the same weight vector
(which is very likely to be true), then there must be equivalent global
minimum f (π(θ∗)) for every permutation π. An objective with this
symmetry must also be nonconvex, because if it were convex, the
point θ̄ = 1

k! ∑π π(θ∗) (where π sums over all the permutations) is
a convex combination of global minima, so it must also be a global
minimum. However, for θ̄ the weight vectors of the neurons are all

tractable landscapes for nonconvex optimization 63

equal to 1
k ∑k

i=1 wi (where wi is the weight of i-th neuron in θ∗), so
hθ̄(x) = kσ(〈 1

k ∑k
i=1 wi, x〉) is equivalent to a neural network with

a single neuron. In most cases a single-neuron network should not
achieve the global minimum, so by proof of contradiction we know f
should not be convex.

It’s also possible to show that functions with symmetry must have
saddle points6. Therefore to optimize such a function, the algorithm 6 Except some degenerate cases such as

constant functions.needs to be able to either avoid or escape from saddle points. More
concretely, one would like to find a second order stationary point.

Definition 7.3.1 (Second order stationary point (SOSP)). For an
objective function f (w) : Rd → R, a point w is a second order stationary
point if ∇ f (w) = 0 and ∇2 f (w) � 0.

The conditions for second order stationary point are known as
the second order necessary conditions for a local minimum. Of
course, generally an optimization algorithm will not be able to find
an exact second order stationary point (just like in Section ?? we
only show gradient descent finds a point with small gradient, but
not 0 gradient). The optimization algorithms can be used to find an
approximate second order stationary point:

Definition 7.3.2 (Approximate second order stationary point). For
an objective function f (w) : Rd → R, a point w is a (ε, γ)-second order
stationary point (later abbreviated as (ε, γ)-SOSP) if ‖∇ f (w)‖2 ≤ ε and
λmin(∇2 f (w)) ≥ −γ.

Later in Chapter ?? we will show that simple variants of gradient
descent can in fact find (ε, γ)-SOSPs efficiently.

Now we are ready to define a class of functions that can be opti-
mized efficiently and allow symmetry and saddle points.

Definition 7.3.3 (Locally optimizable functions). An objective function
f (w) is locally optimizable, if for every τ > 0, there exists ε, γ = poly(τ)
such that every (ε, γ)-SOSP w of f satisfies f (w) ≤ f (w∗) + τ.

Roughly speaking, an objective function is locally optimizable
if every local minimum of the function is also a global minimum,
and the Hessian of every saddle point has a negative eigenvalue.
Similar class of functions were called “strict saddle” or “ridable” in
some previous results. Many nonconvex objectives, including matrix
sensing [BNS16a, PKCS17, GJZ17a], matrix completion [GLM16a,
GJZ17a], dictionary learning [SQW16a], phase retrieval [SQW18],
tensor decomposition [GHJY15a], synchronization problems [BBV16]
and certain objective for two-layer neural network [GLM18] are
known to be locally optimizable.

64 theory of deep learning

7.4 Case study: top eigenvector of a matrix

In this section we look at a simple example of a locally optimizable
function. Given a symmetric PSD matrix M ∈ Rd×d, our goal is to
find its top eigenvector (eigenvector that corresponds to the largest
eigenvalue). More precisely, using SVD we can write M as

M =
d

∑
i=1

λiviv>i .

Here vi’s are orthonormal vectors that are eigenvectors of M, and λi’s
are the eigenvalues. For simplicity we assume λ1 > λ2 ≥ λ3 ≥ · · · ≥
λd ≥ 07. 7 Note that the only real assumption

here is λ1 > λ2, so the top eigenvector
is unique. Other inequalities are
without loss of generality.

There are many objective functions whose global optima gives the
top eigenvector. For example, using basic definition of spectral norm,
we know for PSD matrix M the global optima of

max
‖x‖2=1

x>Mx

is the top eigenvector of M. However, this formulation requires a
constraint. We instead work with an unconstrained version whose
correctness follows from Eckhart-Young Theorem:

min
x∈Rd

f (x) :=
1
4
‖M− xx>‖2

F. (7.6)

Note that this function does have a symmetry in the sense that
f (x) = f (−x). Under our assumptions, the only global minima of
this function are x = ±

√
λ1v1. We are going to show that these are

also the only second order stationary points. We will give two proof
strategies that are commonly used to prove the locally optimizable
property.

7.4.1 Characterizing all critical points

The first idea is simple – we will just try to solve the Equation
∇ f (x) = 0 to get the position of all critical points; then for the
critical points that are not the desired global minimum, try to prove
that they are local maximum or saddle points.

Computing gradient and Hessian Before we solve the equation
∇ f (x) = 0 for the objective function f (x) defined in Equation (7.6),
we first give a simple way of computing the gradient and Hessian.
We will first expand f (x + δ) (where δ should be thought of as a small

tractable landscapes for nonconvex optimization 65

perturbation):

f (x + δ) =
1
4
‖M− (x + δ)(x + δ)>‖2

F

=
1
4
‖M− xx> − (xδ> + δx>)− δδ>‖2

F

=
1
4
‖M− xx>‖2

F −
1
2
〈M− xx>, xδ + δx>〉

+

[
1
4
‖xδ> + δx>‖2

F −
1
2
〈M− xx>, δδ>〉

]
+ o(‖δ‖2

2).

Note that in the last step, we have collected the terms based on the
degree of δ, and ignored all the terms that are smaller than o(‖δ‖2

2).
We can now compare this expression with the Taylor’s expansion of
f (x + δ):

f (x + δ) = f (x) + 〈∇ f (x), δ〉+ 1
2

δ>[∇2 f (x)]δ + o(‖δ‖2
2).

By matching terms, we immediately have

〈∇ f (x), δ〉 = −1
2
〈M− xx>, xδ> + δx>〉,

δ>[∇2 f (x)]δ =
1
2
‖xδ> + δx>‖2

F − 〈M− xx>, δδ>〉.

These can be simplified to give the actual gradient and Hessian8 8 In fact in the next subsection we
will see it is often good enough to
know how to compute 〈∇ f (x), δ〉 and
δ>[∇2 f (x)]δ.

∇ f (x) = (xx> −M)x, ∇2 f (x) = ‖x‖2
2 I + 2xx> −M. (7.7)

Characterizing critical points Now we can execute the original plan.
First set ∇ f (x) = 0, we have

Mx = xx>x = ‖x‖2
2x.

Luckily, this is a well studied equation because we know the only
solutions to Mx = λx are if λ is an eigenvalue and x is (a scaled
version) of the corresponding eigenvector. Therefore we know x =

±
√

λivi or x = 0. These are the only critical points of the objective
function f (x).

Among these critical points, x = ±
√

λ1v1 are our intended so-
lutions. Next we need to show for every other critical point, its
Hessian has a negative eigendirection. We will do this for x =

±
√

λivi(i > 1). By definition, it suffices to show there exists a δ

such that δ>[∇2 f (x)]δ < 0. The main step of the proof involves
guessing what is this direction δ. In this case we will choose δ = v1

(we will give more intuitions about how to choose such a direction in
the next subsection).

66 theory of deep learning

When x = ±
√

λivi, and δ = v1, we have

δ>[∇2 f (x)]δ = v>1 [‖
√

λivi‖2
2 I + 2λiviv>i −M]v1 = λi − λ1 < 0.

Here the last step uses the fact that vi’s are orthonormal vectors and
v>1 Mv1 = λ1. The proof for x = 0 is very similar. Combining all the
steps above, we proved the following claim:

Claim 7.4.1 (Properties of critical points). The only critical points of
f (x) are of the form x = ±

√
λivi or x = 0. For all critical points except

x = ±
√

λ1v1, ∇2 f (x) has a negative eigenvalue.

This claim directly implies that the only second order stationary
points are x = ±

√
λ1v1, so all second order stationary points are also

global minima.

7.4.2 Finding directions of improvements

The approach in Section 7.4.1 is straight-forward. However, in more
complicated problems it is often infeasible to enumerate all the
solutions for ∇ f (x) = 0. What we proved in Section 7.4.1 is also not
strong enough for showing f (x) is locally optimizable, because we
only proved every exact SOSP is a global minimum, and a locally
optimizable function requires every approximate SOSP to be close to
a global minimum. We will now give an alternative approach that is
often more flexible and robust.

For every point x that is not a global minimum, we define its
direction of improvements as below:

Definition 7.4.2 (Direction of improvement). For an objective func-
tion f and a point x, we say δ is a direction of improvement (of f at x) if
|〈∇ f (x), δ〉| > 0 or δ>[∇2 f (x)]δ < 0. We say δ is an (epsilon, γ) direc-
tion of improvement (of f at x) if |〈∇ f (x), δ〉| > ε‖δ‖2 or δ>[∇2 f (x)]δ <

−γ‖δ‖2
2.

Intuitively, if δ is a direction of improvement for f at x, then mov-
ing along one of δ or −δ for a small enough step can decrease the
objective function. In fact, if a point x has a direction of improve-
ment, it cannot be a second order stationary point; if a point x has
an (epsilon, γ) direction of improvement, then it cannot be an (ε, γ)-
SOSP.

Now we can look at the contrapositive of what we were trying
to prove in the definition of locally optimizable functions: if every
point x with f (x) > f (x∗) + τ has an (ε, γ) direction of improvement,
then every (ε, γ)-second order stationary point must satisfy f (x) ≤
f (x∗) + δ. Therefore, our goal in this part is to find a direction of
improvement for every point that is not globally optimal.

tractable landscapes for nonconvex optimization 67

For simplicity, we will look at an even simpler version of the
top eigenvector problem. In particular, we consider the case where
M = zz> is a rank-1 matrix, and z is a unit vector. In this case, the
objective function we defined in Equation (7.6) becomes

min
x

f (x) =
1
4
‖zz> − xx>‖2

F. (7.8)

The intended global optimal solutions are x = ±z. This problem is
often called the matrix factorization problem as we are given a matrix
M = zz>9 and the goal is to find a decomposition M = xx>. 9 Note that we only observe M, not z.

Which direction should we move to decrease the objective func-
tion? In this problem we only have the optimal direction z and the
current direction x, so the natural guesses would be z, x or z − x.
Indeed, these directions are enough:

Lemma 7.4.3. For objective function (7.8), there exists a universal constant
c > 0 such that for any τ < 1, if neither x or z is an (cτ, , 1/4)-direction of
improvement for the point x, then f (x) ≤ τ.

The proof of this lemma involves some detailed calculation. To get
some intuition, we can first think about what happens if neither x or
z is a direction of improvement.

Lemma 7.4.4. For objective function (7.8), if neither x or z is a direction of
improvement of f at x, then f (x) = 0.

Proof. We will use the same calculation for gradient and Hessian
as in Equation (7.7), except that M is now zz>. First, since x is not a
direction of improvement, we must have

〈∇ f (x), x〉 = 0 =⇒ ‖x‖4
2 = 〈x, z〉2. (7.9)

If z is not a direction of improvement, we know z>[∇2 f (x)]z ≥ 0,
which means

‖x‖2 + 2〈x, z〉2 − 1 ≥ 0 =⇒ ‖x‖2 ≥ 1/3.

Here we used the fact that 〈x, z〉2 ≤ ‖x‖2
2‖z‖2

2 = ‖x‖2
2. Together with

Equation (7.9) we know 〈x, z〉2 = ‖x‖4
2 ≥ 1/9.

Finally, since z is not a direction of improvement, we know
〈∇ f (x), z〉 = 0, which implies 〈x, z〉(‖x‖2

2 − 1) = 0. We have al-
ready proved 〈x, z〉2 ≥ 1/9 > 0, thus ‖x‖2

2 = 1. Again combining
with Equation (7.9) we know 〈x, z〉2 = ‖x‖4

2 = 1. The only two vectors
with 〈x, z〉2 = 1 and ‖x‖2

2 = 1 are x = ±z.

The proof of Lemma 7.4.3 is very similar to Lemma 7.4.4, except
we need to allow slacks in every equation and inequality we use. The
additional benefit of having the more robust Lemma 7.4.3 is that the

68 theory of deep learning

proof is also robust if we don’t have access to the exact objective -
in settings where only a subset of coordinates of zz>10, one can still 10 This setting is known as matrix

completion and has been widely applied
to recommendation systems.

prove that the objective function is locally optimizable, and hence
find z by nonconvex optimization.

Lemma 7.4.4 and Lemma 7.4.3 both use directions x and z. It is
also possible to use the direction x − z when 〈x, z〉 ≥ 0 (and x + z
when 〈x, z〉 < 0). Both ideas can be generalized to handle the case
when M = ZZ> where Z ∈ Rd×r, so M is a rank-r matrix.

8
Ultra-wide Neural Networks and Neural Tangent Kernel

Training a neural network is a non-convex optimization problem, and
in the worst case, it is NP-hard [BR89]. On the other hand, empiri-
cally, simple gradient algorithms like stochastic gradient descent can
often achieve zero training loss, i.e., the simple algorithm can find a
neural network that fits all training data. Furthermore, one can still
observe this phenomenon even the original labels are replaced with
random labels [ZBH+

16b].
A widely believed explanation for this surprising phenomenon is

that the neural network is over-parameterized. For example, Wide
ResNet uses 100x parameters than the number of training data. Thus
there must exist one such neural network of this architecture that
can fit all training data. However, theoretically the existence does
not imply that the network found by a randomly initialized gradient
method can fit all the data.

Over-parameterization also brings new theoretical challenge in
generalization. Traditional generalization bounds often require the
number of parameters is much smaller than the number of data
points where in the over-parameterized regime, these bounds become
vacuous.

This chapter relates a neural network trained by randomly initialized
gradient descent with the kernel method with particular kernel func-
tion: Neural Tangent Kernel (NTK) which as first proposed by Jacot,
Gabriel and Hongler [JGH18]. In the following, we will describe how
does NTK arise and use NTK to explain the optimization and gener-
alization behavior of over-parameterized neural networks. At last, we
will also discuss some practical usages of NTK.

8.1 Evolving Equation on Predictions

NTK arises from the dynamics of the predictions on training data
points. We denote by f (w, x) ∈ R the output of a neural network
where w ∈ RN is all the parameters in the network and x ∈ Rd is

70 theory of deep learning

the input. Given a training dataset {(xi, yi)}n
i=1 ⊂ Rd ×R, consider

training the neural network by minimizing the squared loss over
training data:

`(w) =
1
2

n

∑
i=1

(f (w, xi)− yi)
2 .

For simplicity, in this chapter, we study gradient flow, a.k.a., gradient
decent with infinitesimally small learning rate. In this case, the
dynamics can be described by an ordinary differential equation
(ODE):

dw(t)
dt

= −∇`(w(t)).

Note this the dynamics on the parameters. The following lemma
describes the dynamics of the predictions on training data points.

Lemma 8.1.1. Let u(t) = (f (w(t), xi))i∈[n] ∈ Rn be the network outputs
on all xi’s at time t, and y = (yi)i∈[n] be the labels. Then u(t) follows the
following evolution, where H(t) is an n × n positive semidefinite matrix

whose (i, j)-th entry is
〈

∂ f (w(t),xi)
∂w ,

∂ f (w(t),xj)

∂w

〉
:

du(t)
dt

= −H(t) · (u(t)− y). (8.1)

Proof of Lemma 8.1.1. The parameters w evolve according to the differ-
ential equation

dw(t)
dt

= −∇`(w(t)) = −
n

∑
i=1

(f (w(t), xi)− yi)
∂ f (w(t), xi)

∂w
, (8.2)

where t ≥ 0 is a continuous time index. Under Equation (8.2), the
evolution of the network output f (w(t), xi) can be written as

d f (w(t), xi)

dt
= −

n

∑
j=1

(f (w(t), xj)− yj)

〈
∂ f (w(t), xi)

∂w
,

∂ f (w(t), xj)

∂w

〉
.

(8.3)
Since u(t) = (f (w(t), xi))i∈[n] ∈ Rn is the network outputs on all xi’s
at time t, and y = (yi)i∈[n] is the desired outputs, Equation (8.3) can
be written more compactly as

du(t)
dt

= −H(t) · (u(t)− y), (8.4)

where H(t) ∈ Rn×n is a kernel matrix defined as [H(t)]i,j =〈
∂ f (w(t),xi)

∂w ,
∂ f (w(t),xj)

∂w

〉
(∀i, j ∈ [n]).

The statement of Lemma 8.1.1 involves a matrix H(t). Below we
define a neural network architecture whose width is allowed to go
to infinity, while fixing the training data as above. In the limit, it can
be shown that the matrix H(t) remains constant during training i.e.,

ultra-wide neural networks and neural tangent kernel 71

equal to H(0). Moreover, under a random initialization of parame-
ters, the random matrix H(0) converges in probability to a certain
deterministic kernel matrix H∗ as the width goes to infinity, which
is the Neural Tangent Kernel k(·, ·) evaluated on the training data. If
H(t) = H∗ for all t, then Equation (8.1) becomes

du(t)
dt

= −H∗ · (u(t)− y). (8.5)

Note that the above dynamics is identical to the dynamics of kernel
regression under gradient flow, for which at time t → ∞ the final
prediction function is (assuming u(0) = 0)

f ∗(x) = (k(x, x1), . . . , k(x, xn)) · (H∗)−1y. (8.6)

8.2 Coupling Ultra-wide Neural Networks and NTK

In this section, we consider a simple two-layer neural network of the
following form:

f (a, W, x) =
1√
m

m

∑
r=1

arσ
(

w>r x
)

(8.7)

where σ (·) is the activation function. Here we assume |σ̇ (z)| and
|σ̈ (z)| are bounded by 1 for all z ∈ R and For example, soft-plus ac-
tivation function, σ (z) = log (1 + exp(z)), satisfies this assumption. 1 1 Note rectified linear unit (ReLU)

activation function does not satisfy this
assumption. However, one can use a
specialized analysis of ReLU to show
H(t) ≈ H∗ [DZPS18].

We also assume all any input x has Euclidean norm 1, ‖x‖2 = 1. The
scaling 1/

√
m will play an important role in proving H(t) is close to

the fixed H∗ kernel. Throughout the section, to measure the closeness
of two matrices A and B, we use the operator norm ‖·‖2.

We use random initialization wr(0) ∼ N(0, I) and ar ∼ Unif [{−1, 1}].
For simplicity, we will only optimize the first layer, i.e., W = [w1, . . . , wm].
Note this is still a non-convex optimization problem.

We can first calculate H(0) and show as m → ∞, H(0) converges
to a fixed matrix H∗. Note ∂ f (a,W,xi)

∂wr
= 1√

m arxiσ
′ (w>r xi

)
. Therefore,

each entry of H(0) admits the formula

[H(0)]ij =
m

∑
r=1

〈
∂ f (a, W(0), xi)

∂wr(0)
,

∂ f (a, W(0), xj)

∂wr(0)

〉
=

m

∑
r=1

〈
1√
m

arxiσ̇
(

wr(0)>xi

)
,

1√
m

arxjσ
′
(

wr(0)>xi

)〉

=x>i xj ·
∑m

r=1 σ′
(
wr(0)>xi

)
σ′
(
wr(0)>xj

)
m

Here the last step we used a2
r = 1 for all r = 1, . . . , m because we

initialize ar ∼ Unif [{−1, 1}]. Recall every wr(0) is i.i.d. sampled from
a standard Gaussian distribution. Therefore, one can view [H(0)]ij

72 theory of deep learning

as the average of m i.i.d. random variables. If m is large, then by the law
of large number, we know this average is close to the expectation of
the random variable. Here the expectation is the NTK evaluated on xi

and xj:

H∗ij ,x>i xj · E
w∼N(0,I)

[
σ′
(

w>xi

)
σ′
(

w>xj

)]
Using Hoeffding inequality and the union bound, one can easily

obtain the following bound characterizing m and the closeness of
H(0) and H∗.

Lemma 8.2.1 (Perturbation on the Initialization, [DZPS19, SY19]). Fix
some ε > 0. If m = Ω

(
ε−2n2 log (n/δ)

)
, then with probability at least

1− δ over w1(0), . . . , wm(0), we have

‖H(0)− H∗‖2 ≤ ε.

Proof of Lemma 8.2.1. We first fixed an entry (i, j). Note∣∣∣x>i xjσ
′
(

wt(0)>xi

)
σ′
(

wr(0)>xj

)∣∣∣ ≤ 1.

Applying Hoeffding inequality, we have with probability 1− δ
n2 ,

|[H(0)]i,j − H∗i,j| ≤
(2

m
log(2n2/δ)

)1/2
≤ 4(

log(n/δ)

m
)1/2 ≤ ε

n
.

Next, applying the union bound over all pairs (i, j) ∈ [n]× [n], we

have for all (i, j),
∣∣∣[H(0)]i,j − H∗i,j

∣∣∣ ≤ ε
n2 . To establish the operator

norm bound, we simply use the following chain of inequalities

‖H(0)− H∗‖2 ≤ ‖H(0)− H∗‖F

=
(

∑
ij
| [H(0)]i,j − H∗i,j|2

)1/2

≤ (n2 · ε2

n2)
1/2 = ε.

Now we proceed to show during training, H(t) is close to H(0).
Formally, we prove the following lemma.

Lemma 8.2.2. Assume yi = O(1) for all i = 1, . . . , n. Given t > 0, suppose
that for all 0 ≤ τ ≤ t, ui(τ) = O(1) for all i = 1, . . . , n. If m = Ω

(
n6t2

ε2

)
,

we have

‖H(t)− H(0)‖2 ≤ ε.

ultra-wide neural networks and neural tangent kernel 73

Proof of Lemma 8.2.2. The first key idea is to show that every weight
vector only moves little if m is large. To show this, let us calculate the
movement of a single weight vector wr.

‖wr(t)− wr(0)‖2 =

∥∥∥∥∥∥
t∫

0

dwr(τ)

dτ
dτ

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
t∫

0

1√
m

n

∑
i=1

(ui(τ)− yi) arxiσ̇
(

wr(τ)
>xi

)
dτ

∥∥∥∥∥∥
2

≤ 1√
m

∫ ∥∥∥∥∥ n

∑
i=1

(ui(τ)− yi) arxiσ̇
(

wr(τ)
>xi

)∥∥∥∥∥
2

dτ

≤ 1√
m

n

∑
i=1

t∫
0

∥∥∥ui(τ)− yiarxiσ̇
(

wr(τ)
>xi

)∥∥∥
2

dτ

≤ 1√
m

n

∑
i=1

t∫
0

O(1)dτ

=O
(

tn√
m

)
.

This calculation shows that at any given time t, wr(t) is close to wr(0),
as long as m is large. Next, we show this implies the kernel matrix
H(t) is close H(0). We calculate the difference on a single entry.

[H(t)]ij − [H(0)]ij

=

∣∣∣∣∣ 1
m

m

∑
r=1

(
σ̇
(

wr(t)>xi

)
σ̇
(

wr(t)>xj

)
− σ̇

(
wr(0)>xi

)
σ̇
(

wr(0)>xj

))∣∣∣∣∣
≤ 1

m

m

∑
r=1

∣∣∣σ̇ (wr(t)>xi

) (
σ̇
(

wr(t)>xj

)
− σ̇

(
wr(0)>xj

))∣∣∣
+

1
m

m

∑
r=1

∣∣∣σ̇ (wr(0)>xj

) (
σ̇
(

wr(t)>xj

)
− σ̇

(
wr(0)>xi

))∣∣∣
≤ 1

m

m

∑
r=1

∣∣∣max
r

σ̇
(

wr(t)>xi

)
‖xi‖2 ‖wr(t)− wr(0)‖2

∣∣∣
+

1
m

m

∑
r=1

∣∣∣max
r

σ̇
(

wr(t)>xi

)
‖xi‖2 ‖wr(t)− wr(0)‖2

∣∣∣
=

1
m

m

∑
r=1

O
(

tn√
m

)
=O

(
tn√

m

)
.

Therefore, using the same argument as in Lemma 8.2.1, we have

‖H(t)− H(0)‖2 ≤∑
i,j

∣∣∣[H(t)]ij − [H(0)]ij
∣∣∣ = O

(
tn3
√

m

)
.

74 theory of deep learning

Plugging our assumption on m, we finish the proof.

Several remarks are in sequel.
Remark 1: The assumption that yi = O(1) is a mild assumption

because in practice most labels are bounded by an absolute constant.
Remark 2: The assumption on ui(τ) = O(1) for all τ ≤ t and

m’s dependency on t can be relaxed. This requires a more refined
analysis. See [DZPS19].

Remark 3: One can generalize the proof for multi-layer neural
network. See [ADH+

19b] for more details.
Remark 4: While we only prove the continuous time limit, it is

not hard to show with small learning rate (discrete time) gradient
descent, H(t) is close to H∗. See [DZPS19].

8.3 Explaining Optimization and Generalization of Ultra-wide
Neural Networks via NTK

Now we have established the following approximation

du(t)
dt
≈ −H∗ · (u(t)− y) (8.8)

where H∗ is the NTK matrix. Now we use this approximation to
analyze the optimization and generalization behavior of ultra-wide
neural networks.

Understanding Optimization The dynamics of u(t) that follows

du(t)
dt

= −H∗ · (u(t)− y)

is actually linear dynamical system. For this dynamics, there is a
standard analysis. We denote the eigenvalue decomposition of H∗ as

H∗ =
n

∑
i=1

λiviv>i

where λ1 ≥ . . . ≥ λn ≥ 0 are eigenvalues and v1, . . . , vn are eigenvec-
tors. With this decomposition, we consider the dynamics of u(t) on
each eigenvector separately. Formally, fixing an eigenvevector vi and
multiplying both side by vi, we obtain

dv>i u(t)
dt

=− v>i H∗ · (u(t)− y)

=− λi

(
v>i (u(t)− y)

)
.

Observe that the dynamics of v>i u(t) only depends on itself and
λi, so this is actually a one dimensional ODE. Moreover, this ODE

ultra-wide neural networks and neural tangent kernel 75

Figure 8.1: Convergence rate vs.
projections onto eigenvectors of
the kernel matrix.

admits an analytical solution

v>i (u(t)− y) = exp (−λit)
(

v>i (u(0)− y)
)

. (8.9)

Now we use Equation (8.9) to explain why we can find a zero train-
ing error solution. We need to assume λi > 0 for all i = 1, . . . , n, i.e.,
all eigenvalues of this kernel matrix are strictly positive. One can
prove this under fairly general conditions. See [DZPS19, DLL+

18].
Observe that (u(t)− y) is the difference between predictions and

training labels at time t and the algorithm finds a 0 training error
solutions means as t → ∞, we have u(t) − y → 0. Equation (8.9)
implies that each component of this difference, i.e., v>i (u(t)− y) is
converging to 0 exponentially fast because of the exp(−λit) term.
Furthermore, notice that {v1, . . . , vn} forms an orthonormal basis
of Rn, so (u(t)− y) = ∑n

i=1 v>i (u(t)− y). Since we know each
v>i (ui(t)− y)→ 0, we can conclude that (u(t)− y)→ 0 as well.

Equation (8.9) actually gives us more information about the conver-
gence. Note each component v>i (u(t)− y) converges to 0 at a different
rate. The component that corresponds to larger λi converges to 0 at a
faster rate than the one with a smaller λi. For a set of labels, in order
to have faster convergence, we would like the projections of y onto
the top eigenvectors to be larger.2 Therefore, we obtain the follow- 2 Here we ignore the effect of u(0) for

simplicity. See [ADH+
19a] on how to

mitigate the effect on u(0).
ing intuitive rule to compare the convergence rates in a qualitative
manner (for fixed ‖y‖2):

• For a set of labels y, if they align with top eigenvectors, i.e., (v>i y)
is large for large λi, then gradient descent converges quickly.

• For a set of labels, if the projections on eigenvectors {(v>i y)}n
i=1 are

uniform, or labels align with eigenvectors with respect to small
eigenvalues, then gradient descent converges with a slow rate.

We can verify this phenomenon experimentally. In Figure 8.1,
we compare convergence rates of gradient descent between using
original labels, random labels and the worst case labels (normalized
eigenvector of H∗ corresponding to λn. We use the neural network
architecture defined in Equation (8.7) with ReLU activation function

76 theory of deep learning

Figure 8.2: Generalization error
vs. complexity measure.

and only train the first layer. In the right figure, we plot the eigen-
values of H∗ as well as projections of true, random, and worst case
labels on different eigenvectors of H∗. The experiments use gradient
descent on data from two classes of MNIST. The plots demonstrate
that original labels have much better alignment with top eigenvectors,
thus enjoying faster convergence.

Understanding Generalization of Ultra-wide Neural Networks The ap-
proximation in Equation (8.8) implies the final prediction function
of ultra-wide neural network is approximately the kernel prediction
function defined in Equation (8.6). Therefore, we can just use the gen-
eralization theory for kernels to analyze the generalization behavior
of ultra-wide neural networks. For the kernel prediction function
defined in Equation (8.6), we can use Rademacher complexity bound
to derive the following generalization bound for 1-Lipschitz loss
function (which is an upper bound of classification error):

√
2y> (H∗)−1 y · tr (H∗)

n
. (8.10)

This is a data-dependent complexity measure that upper bounds the
generalization error.

We can check this complexity measure empirically. In Figure 8.2,
we compare the generalization error (`1 loss and classification error)
with this complexity measure. We vary the portion of random labels
in the dataset to see how the generalization error and the complexity
measure change. We use the neural network architecture defined in
Equation (8.7) with ReLU activation function and only train the first
layer. The left figure uses data from two classes of MNIST and the
right figure uses two classes from CIFAR. This complexity measure
almost matches the trend of generalization error as the portion of
random labels increases.

ultra-wide neural networks and neural tangent kernel 77

8.4 NTK formula for Multilayer Fully-connected Neural Network

In this section we show case the NTK formulas of fully-connected
neural network. We first define a fully-connected neural net formally.
Let x ∈ Rd be the input, and denote g(0)(x) = x and d0 = d for
notational convenience. We define an L-hidden-layer fully-connected
neural network recursively, for h = 1, 2, . . . , L:

f (h)(x) = W(h)g(h−1)(x) ∈ Rdh , g(h)(x) =
√

cσ

dh
σ
(

f (h)(x)
)
∈ Rdh

(8.11)
where W(h) ∈ Rdh×dh−1 is the weight matrix in the h-th layer (h ∈ [L]),
σ : R → R is a coordinate-wise activation function, and cσ =(

Ez∼N (0,1)
[
σz2])−1

. The last layer of the neural network is

f (w, x) = f (L+1)(x) = W(L+1) · g(L)(x)

= W(L+1) ·
√

cσ

dL
σW(L) ·

√
cσ

dL−1
σW(L−1) · · ·

√
cσ

d1
σW(1)x,

where W(L+1) ∈ R1×dL is the weights in the final layer, and w =(
W(1), . . . , W(L+1)

)
represents all the parameters in the network.

We initialize all the weights to be i.i.d. N (0, 1) random variables,
and consider the limit of large hidden widths: d1, d2, . . . , dL → ∞.
The scaling factor

√
cσ/dh in Equation (8.11) ensures that the norm

of g(h)(x) for each h ∈ [L] is approximately preserved at initial-
ization (see [DLL+

18]). In particular, for ReLU activation, we have

E

[∥∥∥g(h)(x)
∥∥∥2

2

]
= ‖x‖2

2 (∀h ∈ [L]).

Recall from Lemma 8.1.1 that we need to compute the value that〈
∂ f (w,x)

∂w , ∂ f (w,x′)
∂w

〉
converges to at random initialization in the infinite

width limit. We can write the partial derivative with respect to a
particular weight matrix W(h) in a compact form:

∂ f (w, x)
∂W(h)

= b(h)(x) ·
(

g(h−1)(x)
)>

, h = 1, 2, . . . , L + 1,

where

b(h)(x) =

1 ∈ R, h = L + 1,√
cσ
dh

D(h)(x)
(

W(h+1)
)>

b(h+1)(x) ∈ Rdh , h = 1, . . . , L,

(8.12)

D(h)(x) = diag
(

σ̇
(

f (h)(x)
))
∈ Rdh×dh , h = 1, . . . , L. (8.13)

Then, for any two inputs x and x′, and any h ∈ [L + 1], we can

78 theory of deep learning

compute 〈
∂ f (w, x)

∂W(h)
,

∂ f (w, x′)
∂W(h)

〉
=

〈
b(h)(x) ·

(
g(h−1)(x)

)>
, b(h)(x′) ·

(
g(h−1)(x′)

)>〉
=
〈

g(h−1)(x), g(h−1)(x′)
〉
·
〈

b(h)(x), b(h)(x′)
〉

.

Note the first term
〈

g(h−1)(x), g(h−1)(x′)
〉

is the covariance be-

tween x and x′ at the h-th layer. When the width goes to infinity,〈
g(h−1)(x), g(h−1)(x′)

〉
will converge to a fix number, which we de-

note as Σ(h−1)(x, x′). This covariance admits a recursive formula, for
h ∈ [L],

Σ(0)(x, x′) = x>x′,

Λ(h)(x, x′) =

(
Σ(h−1)(x, x) Σ(h−1)(x, x′)
Σ(h−1)(x′, x) Σ(h−1)(x′, x′)

)
∈ R2×2,

Σ(h)(x, x′) = cσE(u,v)∼N (0,Λ(h)) [σ (u) σ (v)] .

(8.14)

Now we proceed to derive this formula. The intuition is that[
f (h+1)(x)

]
i
= ∑dh

j=1

[
W(h+1)

]
i,j

[
g(h)(x)

]
j

is a centered Gaussian

process conditioned on f (h) (∀i ∈ [dh+1]), with covariance

E
[[

f (h+1)(x)
]

i
·
[

f (h+1)(x′)
]

i

∣∣∣ f (h)]
=
〈

g(h)(x), g(h)(x′)
〉

=
cσ

dh

dh

∑
j=1

σ

([
f (h)(x)

]
j

)
σ

([
f (h)(x′)

]
j

)
,

(8.15)

which converges to Σ(h)(x, x′) as dh → ∞ given that each
[

f (h)
]

j
is

a centered Gaussian process with covariance Σ(h−1). This yields the
inductive definition in Equation (8.14).

Next we deal with the second term
〈

b(h)(x), b(h)(x′)
〉

. From
Equation (8.12) we get〈

b(h)(x), b(h)(x′)
〉

=

〈√
cσ

dh
D(h)(x)

(
W(h+1)

)>
b(h+1)(x),

√
cσ

dh
D(h)(x′)

(
W(h+1)

)>
b(h+1)(x′)

〉
.

(8.16)
Although W(h+1) and bh+1(x) are dependent, the Gaussian ini-

tialization of W(h+1) allows us to replace W(h+1) with a fresh new
sample W̃(h+1) without changing its limit: (See [ADH+

19c] for the

ultra-wide neural networks and neural tangent kernel 79

precise proof.)〈√
cσ

dh
D(h)(x)

(
W(h+1)

)>
b(h+1)(x),

√
cσ

dh
D(h)(x′)

(
W(h+1)

)>
b(h+1)(x′)

〉
≈
〈√

cσ

dh
D(h)(x)

(
W̃(h+1)

)>
b(h+1)(x),

√
cσ

dh
D(h)(x′)

(
W̃(h+1)

)>
b(h+1)(x′)

〉
→ cσ

dh
trD(h)(x)D(h)(x′)

〈
b(h+1)(x), b(h+1)(x′)

〉
→Σ̇(h) (x, x′

) 〈
b(h+1)(x), b(h+1)(x′)

〉
.

Applying this approximation inductively in Equation (8.16), we get

〈
b(h)(x), b(h)(x′)

〉
→

L

∏
h′=h

Σ̇(h′)(x, x′).

Finally, since
〈

∂ f (w,x)
∂w , ∂ f (w,x′)

∂w

〉
= ∑L+1

h=1

〈
∂ f (w,x)
∂W(h) , ∂ f (w,x′)

∂W(h)

〉
, we ob-

tain the final NTK expression for the fully-connected neural network:

Θ(L)(x, x′) =
L+1

∑
h=1

(
Σ(h−1)(x, x′) ·

L+1

∏
h′=h

Σ̇(h′)(x, x′)

)
.

8.5 NTK in Practice

Up to now we have shown an ultra-wide neural network with certain
initialization scheme and trained by gradient flow correspond to a
kernel with a particular kernel function. A natural question is: why
don’t we use this kernel classifier directly?

A recent line of work showed that NTKs can be empirically useful,
especially on small to medium scale datasets. Arora et al. [ADL+

19]
tested the NTK classifier on 90 small to medium scale datasets from
UCI database. 3 They found NTK can beat neural networks, other 3 https://archive.ics.uci.edu/ml/datasets.php

kernels like Gaussian and the best previous classifier, random forest
under various metrics, including average rank, average accuracy,
etc. This suggests the NTK classifier should belong in any list of
off-the-shelf machine learning methods.

For every neural network architecture, one can derive a corre-
sponding kernel function. Du et al. [DHS+19] derived graph NTK
(GNTK) for graph classification tasks. On various social network
and bioinformatics datasets, GNTK can outperform graph neural
networks.

Similarly, Arora et al. [ADH+
19c] derived convolutional NTK

(CNTK) formula that corresponds to convolutional neural networks.
For image classification task, in small-scale data and low-shot set-
tings, CNTKs can be quite strong [ADL+

19]. However, for large
scale data, Arora et al. [ADH+

19c] found there is still a performance

80 theory of deep learning

gap between CNTK and CNN. It is an open problem to explain this
phenomenon theoretically. This may need to go beyond the NTK
framework.

8.6 Exercises

1. NTK formula for ReLU activation function: prove Ew∼N (0,I)
[
σ̇w>xσ̇w>x′

]
=

π−arccos
(

x>x′
‖x‖2‖x′‖2

)
2π .

2. Prove Equation (8.10)

9
Inductive Biases due to Algorithmic Regularization

Many successful modern machine learning systems based on deep
neural networks are over-parametrized, i.e., the number of param-
eters is typically much larger than the sample size. In other words,
there exist (infinitely) many (approximate) minimizers of the empir-
ical risk, many of which would not generalize well on the unseen
data. For learning to succeed then, it is crucial to bias the learning
algorithm towards “simpler” hypotheses by trading off empirical loss
with a certain complexity term that ensures that empirical and pop-
ulation risks are close. Several explicit regularization strategies have
been used in practice to help these systems generalize, including `1

and `2 regularization of the parameters [NH92].
Besides explicit regularization techniques, practitioners have used

a spectrum of algorithmic approaches to improve the generalization
ability of over-parametrized models. This includes early stopping
of back-propagation [CLG01], batch normalization [IS15], dropout
[SHK+

14], and more1. While these heuristics have enjoyed tremen- 1 We refer the reader to [KGC17] for an
excellent exposition of over 50 of such
proposals.

dous success in training deep networks, a theoretical understanding
of how these heuristics provide regularization in deep learning
remains somewhat limited.

In this chapter, we investigate regularization due to Dropout, an
algorithmic heurisitic recently proposed by [SHK+

14]. The basic
idea when training a neural network using dropout, is that during
a forward pass, we randomly drop neurons in the neural network,
independently and identically according to a Bernoulli distribution.
Specifically, at each round of the back-propagation algorithm, for
each neuron, independently, with probability p we “drop” the neu-
ron, so it does not participate in making a prediction for the given
data point, and with probability 1− p we retain that neuron 2. 2 The parameter p is treated as a hyper-

parameter which we typically tune for
based on a validation set.

Deep learning is a field where key innovations have been driven
by practitioners, with several techniques motivated by drawing in-
sights from other fields. For instance, Dropout was introduced as
a way of breaking up “co-adaptation” among neurons, drawing

82 theory of deep learning

insights from the success of the sexual reproduction model in the
evolution of advanced organisms. Another motivation that was cited
by [SHK+

14] was in terms of “balancing networks”. Despite several
theoretical works aimed at explaining Dropout 3, it remains unclear 3

what kind of regularization does Dropout provide or what kinds
of networks does Dropout prefer and how that helps with general-
ization. In this chapter, we work towards that goal by instantiating
explicit forms of regularizers due to Dropout and how they provide
capacity control in various machine learning including linear regres-
sion (Section 9.4), matrix sensing (Section 9.1.1), matrix completion
(Section 9.1.2), and deep learning (Section 9.2).

9.1 Matrix Sensing

We begin with understanding dropout for matrix sensing, a problem
which arguably is an important instance of a matrix learning problem
with lots of applications, and is well understood from a theoretical
perspective. Here is the problem setup.

Let M∗ ∈ Rd2×d0 be a matrix with rank r∗ := Rank(M∗). Let
A(1), . . . , A(n) be a set of measurement matrices of the same size as
M∗. The goal of matrix sensing is to recover the matrix M∗ from n
observations of the form yi = 〈M∗, A(i)〉 such that n � d2d0. The
learning algorithm we consider is empirical risk minimization, and
we choose to represent the parameter matrix M ∈ Rd2×d0 in terms of
product of its factors U ∈ Rd2×d1 , V ∈ Rd0×d1 :

min
U∈Rd2×d1 ,V∈Rd0×d1

L̂(U, V) :=
1
n

n

∑
i=1

(yi − 〈UV>, A(i)〉)2. (9.1)

When d1 � r∗, there exist many “bad” empirical minimizers, i.e.,
those with a large true risk. However, recently, [LMZ18] showed that
under restricted isometry property, despite the existence of such poor
ERM solutions, gradient descent with proper initialization is implicitly
biased towards finding solutions with minimum nuclear norm – this
is an important result which was first conjectured and empirically
verified by [GWB+

17].
We propose solving the ERM problem (9.1) with algorithmic regu-

larization due to dropout, where at training time, the corresponding
columns of U and V are dropped independently and identically ac-
cording to a Bernoulli random variable. As opposed to the implicit
effect of gradient descent, this dropout heuristic explicitly regularizes
the empirical objective. It is then natural to ask, in the case of matrix
sensing, if dropout also biases the ERM towards certain low norm
solutions. To answer this question, we begin with the observation
that dropout can be viewed as an instance of SGD on the following

inductive biases due to algorithmic regularization 83

objective:

L̂drop(U, V) =
1
n

n

∑
i=1

EB(yi − 〈UBV>, A(i)〉)2, (9.2)

where B ∈ Rd1×d1 is a diagonal matrix whose diagonal elements are
Bernoulli random variables distributed as Bjj ∼ 1

1−p Ber(1− p), for
j ∈ [d1]. In this case, we can show that for any p ∈ [0, 1):

L̂drop(U, V) = L̂(U, V) +
p

1− p
R̂(U, V), (9.3)

where

R̂(U, V) =
d1

∑
j=1

1
n

n

∑
i=1

(u>j A(i)vj)
2 (9.4)

is a data-dependent term that captures the explicit regularizer due to
dropout.

Proof. Consider one of the summands in the Dropout objective in
Equation 9.2. Then, we can write

EB[(yi − 〈UBV>, A(i)〉)2] =
(

EB[yi − 〈UBV>, A(i)〉]
)2

+Var(yi − 〈UBV>, A(i)〉) (9.5)

For Bernoulli random variable Bjj, we have that E[Bjj] = 1 and
Var(Bjj) = p

1−p . Thus, the first term on right hand side is equal to

(yi − 〈UV>, A(i)〉)2. For the second term we have

Var(yi − 〈UBV>, A(i)〉) = Var(〈UBV>, A(i)〉)

= Var(〈B, U>A(i)V〉)

= Var(
d1

∑
j=1

Bjju>j A(i)vj)

=
d1

∑
j=1

(u>j A(i)vj)
2 Var(Bjj)

=
p

1− p

d1

∑
j=1

(u>j A(i)vj)
2

Using the facts above in Equation (9.2), we get

L̂drop(U, V) =
1
n

n

∑
i=1

(yi − 〈UV>, A(i)〉)2 +
1
n

n

∑
i=1

p
1− p

d1

∑
j=1

(u>j A(i)vj)
2

= L̂(U, V) +
p

1− p
R̂(U, V).

which completes the proof.

84 theory of deep learning

Provided that the sample size n is large enough, the explicit reg-
ularizer on a given sample behaves much like its expected value
with respect to the underlying data distribution 4. Further, given that 4 Under mild assumptions, we can for-

mally show that the dropout regularizer
is well concentrated around its mean

we seek a minimum of L̂drop, it suffices to consider the factors with
the minimal value of the regularizer among all that yield the same
empirical loss. This motivates studying the the following distribution-
dependent induced regularizer:

Θ(M) := min
UV>=M

R(U, V), where R(U, V) := EA[R̂(U, V)].

Next, we consider two two important examples of random sensing
matrices.

9.1.1 Gaussian Sensing Matrices

We assume that the entries of the sensing matrices are independently
and identically distributed as standard Gaussian, i.e., A(i)

k` ∼ N (0, 1).
For Gaussian sensing matrices, we show that the induced regularizer
due to Dropout provides nuclear-norm regularization. Formally, we
show that

Θ(M) =
1
d1
‖M‖2

∗. (9.6)

Proof. We recall the general form for the dropout regularizer for the
matrix sensing problem in Equation 9.4, and take expectation with
respect to the distribution on the sensing matrices. Then, for any pair
of factors (U, V), it holds that the expected regularizer is given as
follows.

R(U, V) =
d1

∑
j=1

E(u>j Avj)
2

=
d1

∑
j=1

E(
d2

∑
k=1

d0

∑
`=1

UkjAk`V`j)
2

=
d1

∑
j=1

d2

∑
k,k′=1

d0

∑
`,`′=1

UkjUk′ jV`jV`′ j E[Ak`Ak′`′]

=
d1

∑
j=1

d2

∑
k=1

d0

∑
`=1

U2
kjV

2
`j E[A2

k`]

=
d1

∑
j=1

d2

∑
k=1

d0

∑
`=1

U2
kjV

2
`j

=
d1

∑
j=1
‖uj‖2‖vj‖2

inductive biases due to algorithmic regularization 85

Now, using the Cauchy-Schwartz inequality, we can bound the
expected regularizer as

R(U, V) ≥ 1
d1

(
d1

∑
i=1
‖ui‖‖vi‖

)2

=
1
d1

(
d1

∑
i=1
‖uiv>i ‖∗

)2

≥ 1
d1

(
‖

d1

∑
i=1

uiv>i ‖∗

)2

=
1
d1
‖UV>‖2

∗

where the equality follows because for any pair of vectors a, b, it
holds that ‖ab>‖∗ = ‖ab>‖F = ‖a‖‖b‖, and the last inequality is due
to triangle inequality.

Next, we need the following key result from [MAV18].

Theorem 9.1.1. For any pair of matrices U ∈ Rd2×d1 , V ∈ Rd0×d1 , there
exists a rotation matrix Q ∈ SO(d1) such that matrices Ũ := UQ, Ṽ :=
VQ satisfy ‖ũi‖‖ṽi‖ = 1

d1
‖UV>‖∗, for all i ∈ [d1].

Using Theorem 9.1.1 on (U, V), the expected dropout regularizer
at UQ, VQ is given as

R(UQ, VQ) =
d1

∑
i=1
‖Uqi‖

2‖Vqi‖
2

=
d1

∑
i=1

1
d2

1
‖UV>‖2

∗

=
1
d1
‖UV>‖2

∗

≤ Θ(UV>)

which completes the proof.

For completeness we provide a proof of Theorem 9.1.1.

Proof. Define M := UV>. Let M = WΣY> be compact SVD of M.

Define Û := WΣ1/2 and V̂ := YΣ1/2. Let GU = Û
>

Û and GV = V̂
>

V̂
be respective Gram matrices. Observe that GU = GV = Σ. We will
show that there exists a rotation Q such that for Ũ = ÛQ, Ṽ = V̂Q, it
holds that

‖ũj‖2 =
1
d1
‖Ũ‖2

F =
1
d1

Tr(Ũ
>

Ũ) =
1
d1

Tr(Σ) =
1
d1
‖M‖∗

and

‖ṽj‖2 =
1
d1
‖Ṽ‖2

F =
1
d1

Tr(Ṽ
>

Ṽ) =
1
d1

Tr(Σ) =
1
d1
‖M‖∗

86 theory of deep learning

Consequently, it holds that ‖ũi‖‖ṽi‖ = 1
d1
‖M‖∗.

All that remains is to give a construction of matrix Q. We note
that a rotation matrix Q satisfies the desired properties above if and
only if all diagonal elements of Q>GUQ are equal5, and equal to 5 since (Q>GUQ)jj = ‖ũj‖2

Tr GU
d1

. The key idea is that for the trace zero matrix G1 := GU −
Tr GU

d1
Id1 , if G1 = ∑r

i=1 λieie>i is an eigendecomposition of G1, then

for the average of the eigenvectors, i.e. for w11 = 1√
r ∑r

i=1 ei, it holds

that w>11G1w11 = 0. We use this property recursively to exhibit
an orthogonal transformation Q, such that Q>G1Q is zero on its
diagonal.

To verify the claim, first notice that w11 is unit norm

‖w11‖2 = ‖ 1√
r

r

∑
i=1

ei‖2 =
1
r

r

∑
i=1
‖ei‖2 = 1.

Further, it is easy to see that

w>11Gw11 =
1
r

r

∑
i,j=1

eiGej =
1
r

r

∑
i,j=1

λje>i ej =
1
r

r

∑
i=1

λi = 0.

Complete W1 := [w11, w12, · · · , w1d] be such that W>1 W1 = W1W>1 =

Id. Observe that W>1 G1W1 has zero on its first diagonal elements

W>1 G1W1 =

[
0 b>1
b1 G2

]

The principal submatrix G2 also has a zero trace. With a similar
argument, let w22 ∈ Rd−1 be such that ‖w22‖ = 1 and w>22G2w22 = 0

and define W2 =

[
1 0 0 · · · 0
0 w22 w23 · · · w2d

]
∈ Rd×d such that

W>2 W2 = W2W>2 = Id, and observe that

(W1W2)
>G1(W1W2) =

0 · · · ·
· 0 · · ·
...

... G3

 .

This procedure can be applied recursively so that for the matrix
Q = W1W2 · · ·Wd we have

Q>G1Q =

0 · · · · ·
· 0 · · · ·
...

...
. . .

...
· · · 0

 ,

so that Tr(ŨŨ
>
) = Tr(Q>GUQ) = Tr(Σ) = Tr(Q>GVQ) = Tr(Ṽ

>
Ṽ).

inductive biases due to algorithmic regularization 87

9.1.2 Matrix Completion

Next, we consider the problem of matrix completion which can be
formulated as a special case of matrix sensing with sensing matrices
that random indicator matrices. Formally, we assume that for all
j ∈ [n], let A(j) be an indicator matrix whose (i, k)-th element is
selected randomly with probability p(i)q(k), where p(i) and q(k)
denote the probability of choosing the i-th row and the j-th column,
respectively.

We will show next that in this setup Dropout induces the weighted
trace-norm studied by [SS10] and [FSSS11]. Formally, we show that

Θ(M) =
1
d1
‖diag(

√
p)UV>diag(

√
q)‖2
∗. (9.7)

Proof. For any pair of factors (U, V) it holds that

R(U, V) =
d1

∑
j=1

E(u>j Avj)
2

=
d1

∑
j=1

d2

∑
k=1

d0

∑
`=1

p(k)q(`)(u>j eke>` vj)
2

=
d1

∑
j=1

d2

∑
k=1

d0

∑
`=1

p(k)q(`)U(k, j)2V(`, j)2

=
d1

∑
j=1
‖
√

diag(p)uj‖2‖
√

diag(q)vj‖2

≥ 1
d1

(
d1

∑
j=1
‖
√

diag(p)uj‖‖
√

diag(q)vj‖
)2

=
1
d1

(
d1

∑
j=1
‖
√

diag(p)ujv>j
√

diag(q)‖∗

)2

≥ 1
d1

(
‖
√

diag(p)
d1

∑
j=1

ujv>j
√

diag(q)‖∗

)2

=
1
d1
‖
√

diag(p)UV>
√

diag(q)‖2
∗

where the first inequality is due to Cauchy-Schwartz and the second
inequality follows from the triangle inequality. The equality right
after the first inequality follows from the fact that for any two vectors
a, b, ‖ab>‖∗ = ‖ab>‖F = ‖a‖‖b‖. Since the inequalities hold for any
U, V, it implies that

Θ(UV>) ≥ 1
d1
‖
√

diag(p)UV>
√

diag(q)‖2
∗.

Applying Theorem 9.1.1 on (
√

diag(p)U,
√

diag(q)V), there exists

88 theory of deep learning

a rotation matrix Q such that

‖
√

diag(p)Uqj‖‖
√

diag(q)Vqj‖ =
1
d1
‖
√

diag(p)UV>
√

diag(q)‖∗.

We evaluate the expected dropout regularizer at UQ, VQ:

R(UQ, VQ) =
d1

∑
j=1
‖
√

diag(p)Uqj‖
2‖
√

diag(q)Vqj‖
2

=
d1

∑
j=1

1
d2

1
‖
√

diag(p)UV>
√

diag(q)‖2
∗

=
1
d1
‖
√

diag(p)UV>
√

diag(q)‖2
∗

≤ Θ(UV>)

which completes the proof.

The results above are interesting because they connect Dropout,
an algorithmic heuristic in deep learning, to strong complexity
measures that are empirically effective as well as theoretically well
understood. To illustrate, here we give a generalization bound for
matrix completion with dropout in terms of the value of the explicit
regularizer at the minimum of the empirical problem.

Theorem 9.1.2. Without loss of generality, assume that d2 ≥ d0 and
‖M∗‖ ≤ 1. Furthermore, assume that mini,j p(i)q(j) ≥ log(d2)

n
√

d2d0
. Let

(U, V) be a minimizer of the dropout ERM objective in equation (9.2),
and assume that maxi ‖U(i, :)‖2 ≤ γ, maxi ‖V(i, :)‖2 ≤ γ. Let α be
such that R̂(U, V) ≤ α/d1. Then, for any δ ∈ (0, 1), the following
generalization bounds holds with probability at least 1− 2δ over a
sample of size n:

L(U, V) ≤ L̂(U, V) + C(1 + γ)

√
αd2 log(d2)

n
+ C′(1 + γ2)

√
log(2/δ)

2n

as long as n = Ω
(
(d1γ2/α)2 log(2/δ)

)
, where C, C′ are some absolute

constants.

The proof of Theorem 9.1.2 follows from standard generaliza-
tion bounds for `2 loss [MRT18] based on the Rademacher com-
plexity [BM02] of the class of functions with weighted trace-norm
bounded by

√
α, i.e. Mα := {M : ‖diag(

√
p)Mdiag(

√
q)‖2
∗ ≤ α}. A

bound on the Rademacher complexity of this class was established
by [FSSS11]. The technicalities here include showing that the explicit
regularizer is well concentrated around its expected value, as well
as deriving a bound on the supremum of the predictions. A few
remarks are in order.

inductive biases due to algorithmic regularization 89

We require that the sampling distributions be non-degenerate, as
specified by the condition mini,j p(i)q(j) ≥ log(d2)

n
√

d2d0
. This is a natural

requirement for bounding the Rademacher complexity ofMα, as
discussed in [FSSS11].

We note that for large enough sample size, R̂(U, V) ≈ R(U, V) ≈
Θ(UV>) = 1

d1
‖diag(

√
p)UV>diag(

√
q)‖2
∗, where the second ap-

proximation is due the fact that the pair (U, V) is a minimizer. That
is, compared to the weighted trace-norm, the value of the explicit
regularizer at the minimizer roughly scales as 1/d1. Hence the as-
sumption R̂(U, V) ≤ α/d1 in the statement of the corollary.

In practice, for models that are trained with dropout, the training
error L̂(U, V) is negligible. Moreover, given that the sample size is
large enough, the third term can be made arbitrarily small. Having
said that, the second term, which is Õ(γ

√
αd2/n), dominates the

right hand side of generalization error bound in Theorem 9.1.2.
The assumption maxi ‖U(i, :)‖2 ≤ γ, maxi ‖V(i, :)‖2 ≤ γ is

motivated by the practice of deep learning; such max-norm constraints
are typically used with dropout, where the norm of the vector of
incoming weights at each hidden unit is constrained to be bound by
a constant [SHK+

14]. In this case, if a dropout update violates this
constraint, the weights of the hidden unit are projected back to the
constraint norm ball. In proofs, we need this assumption to give a
concentration bound for the empirical explicit regularizer, as well as
bound the supremum deviation between the predictions and the true
values. We remark that the value of γ also determines the complexity
of the function class. On one hand, the generalization gap explicitly
depends on and increases with γ. However, when γ is large, the
constraints on U, V are milder, so that L̂(U, V) can be made smaller.

Finally, the required sample size heavily depends on the value
of the explicit regularizer at the optima (α/d1), and hence, on the
dropout rate p. In particular, increasing the dropout rate increases
the regularization parameter λ := p

1−p , thereby intensifies the penalty
due to the explicit regularizer. Intuitively, a larger dropout rate p
results in a smaller α, thereby a tighter generalization gap can be
guaranteed. We show through experiments that that is indeed the
case in practice.

9.2 Deep neural networks

Next, we focus on neural networks with multiple hidden layers.
Let X ⊆ Rd0 and Y ⊆ Rdk denote the input and output spaces,
respectively. Let D denote the joint probability distribution on X ×Y .
Given n examples {(xi, yi)}n

i=1 ∼ Dn drawn i.i.d. from the joint
distribution and a loss function ` : Y × Y → R, the goal of learning

90 theory of deep learning

is to find a hypothesis fw : X → Y , parameterized by w, that has a
small population risk L(w) := ED [`(fw(x), y)].

We focus on the squared `2 loss, i.e., `(y, y′) = ‖y − y′‖2, and
study the generalization properties of the dropout algorithm for
minimizing the empirical risk L̂(w) := 1

n ∑n
i=1[‖yi − fw(xi)‖2]. We

consider the hypothesis class associated with feed-forward neu-
ral networks with k layers, i.e., functions of the form fw(x) =

Wkσ(Wk−1σ(· · ·W2σ(W1x) · · ·)), where Wi ∈ Rdi×di−1 , for i ∈ [k], is
the weight matrix at i-th layer. The parameter w is the collection of
weight matrices {Wk, Wk−1, . . . , W1} and σ : R → R is an activation
function applied entrywise to an input vector.

In modern machine learning systems, rather than talk about a
certain network topology, we should think in terms of layer topology
where each layer could have different characteristics – for example,
fully connected, locally connected, or convolutional. In convolutional
neural networks, it is a common practice to apply dropout only to the
fully connected layers and not to the convolutional layers. Further-
more, in deep regression, it has been observed that applying dropout
to only one of the hidden layers is most effective [LMAPH19]. In our
study, dropout is applied on top of the learned representations or
features, i.e. the output of the top hidden layer. In this case, dropout
updates can be viewed as stochastic gradient descent iterates on the
dropout objective:

L̂drop(w) :=
1
n

n

∑
i=1

EB ‖yi −WkBσ(Wk−1σ(· · ·W2σ(W1xi) · · ·))‖2

(9.8)
where B is a diagonal random matrix with diagonal elements dis-
tributed identically and independently as Bii ∼ 1

1−p Bern(1− p), i ∈
[dk−1], for some dropout rate p. We seek to understand the explicit
regularizer due to dropout:

R̂(w) := L̂drop(w)− L̂(w) (explicit regularizer)

We denote the output of the i-th hidden node in the j-th hidden
layer on an input vector x by ai,j(x) ∈ R; for example, a1,2(x) =

σ(W2(1, :)>σ(W1x)). Similarly, the vector aj(x) ∈ Rdj denotes the
activation of the j-th layer on input x. Using this notation, we can
conveniently rewrite the Dropout objective (see Equation 9.8) as
L̂drop(w) := 1

n ∑n
i=1 EB ‖yi −WkBak−1(xi)‖2. It is then easy to show

that the explicit regularizer due to dropout is given as follows.

Proposition 9.2.1 (Dropout regularizer in deep regression).

L̂drop(w) = L̂(w) + R̂(w), where R̂(w) = λ
dk−1

∑
j=1
‖Wk(:, j)‖2 â2

j .

inductive biases due to algorithmic regularization 91

where âj =
√

1
n ∑n

i=1 aj,k−1(xi)2 and λ = p
1−p is the regularization

parameter.

Proof. Recall that E[Bii] = 1 and Var(Bii) =
p

1−p . Conditioned on x, y
in the current mini-batch, we have that

EB[‖y−WkBak−1(x)‖2] =
dk

∑
i=1

EB(yi −Wk(i, :)>Bak−1(x))
2. (9.9)

The following holds for each of the summands above:

EB(yi −Wk(i, :)>Bak−1(x))2 =
(

EB[yi −Wk(i, :)>Bak−1(x)]
)2

+Var(yi −Wk(i, :)>Bak−1(x)).

Since E[B] = I, the first term on right hand side is equal to (yi −Wk(:
, i)>ak−1(x))2. For the second term we have

Var(yi −Wk(i, :)>Bak−1(x)) = Var(Wk(i, :)>Bak−1(x))

= Var(
dk−1

∑
j=1

Wk(i, j)Bjjaj,k−1(x))

=
dk−1

∑
j=1

(Wk(i, j)aj,k−1(x))
2 Var(Bjj)

=
p

1− p

dk−1

∑
j=1

Wk(i, j)2aj,k−1(x)
2

Plugging the above into Equation (9.9)

EB[‖y−WkBak−1(x)‖2] = ‖y−Wkak−1(x)‖2

+
p

1− p

dk−1

∑
j=1
‖Wk(:, j)‖2aj,k−1(x)

2

Now taking the empirical average with respect to x, y, we get

L̂drop(w) = L̂(w) +
p

1− p

dk−1

∑
j=1
‖Wk(:, j)‖2 â2

j = L̂(w) + R̂(w)

which completes the proof.

The explicit regularizer R̂(w) is the summation over hidden nodes,
of the product of the squared norm of the outgoing weights with
the empirical second moment of the output of the corresponding
neuron. For a two layer neural network with ReLU, when the input
distribution is symmetric and isotropic, the expected regularizer is
equal to the squared `2 path-norm of the network [NTS15b]. Such
a connection has been previously established for deep linear net-
works [MAV18, MA19]; here we extend that result to single hidden
layer ReLU networks.

92 theory of deep learning

Proposition 9.2.2. Consider a two layer neural network fw(·) with
ReLU activation functions in the hidden layer. Furthermore, as-
sume that the marginal input distribution PX (x) is symmetric and
isotropic, i.e., PX (x) = PX (−x) and E[xx>] = I. Then the expected
explicit regularizer due to dropout is given as

R(w) := E[R̂(w)] =
λ

2

d0,d1,d2

∑
i0,i1,i2=1

W2(i2, i1)2W1(i1, i0)2, (9.10)

Proof of Proposition 9.2.2. Using Proposition 9.2.1, we have that:

R(w) = E[R̂(w)] = λ
d1

∑
j=1
‖W2(:, j)‖2 E[σ(W1(j, :)>x)2]

It remains to calculate the quantity Ex[σ(W1(j, :)>x)2]. By symmetry
assumption, we have that PX (x) = PX (−x). As a result, for any
v ∈ Rd0 , we have that P(v>x) = P(−v>x) as well. That is, the
random variable zj := W1(j, :)>x is also symmetric about the origin.
It is easy to see that Ez[σ(z)2] = 1

2 Ez[z2].

E
z
[σ(z)2] =

∫ ∞

−∞
σ(z)2dµ(z)

=
∫ ∞

0
σ(z)2dµ(z) =

∫ ∞

0
z2dµ(z)

=
1
2

∫ ∞

−∞
z2dµ(z) =

1
2

E
z
[z2].

Plugging back the above identity in the expression of R(w), we get
that

R(w) =
λ

2

d1

∑
j=1
‖W2(:, j)‖2 E[(W1(j, :)>x)2] =

λ

2

d1

∑
j=1
‖W2(:, j)‖2‖W1(j, :)‖2

where the second equality follows from the assumption that the
distribution is isotropic.

9.3 Landscape of the Optimization Problem

While the focus in Section 9.2 was on understanding the implicit bias
of dropout in terms of the global optima of the resulting regularized
learning problem, here we focus on computational aspects of dropout
as an optimization procedure. Since dropout is a first-order method
and the landscape of the Dropout objective (e.g., Problem 9.11) is
highly non-convex, we can perhaps only hope to find a local mini-
mum, that too provided if the problem has no degenerate saddle
points [LSJR16, GHJY15b]. Therefore, in this section, we pose the
following questions: What is the implicit bias of dropout in terms of local

inductive biases due to algorithmic regularization 93

minima? Do local minima share anything with global minima structurally
or in terms of the objective? Can dropout find a local optimum?

For the sake of simplicity of analysis, we focus on the case of
single hidden layer linear autoencoders with tied weights, i.e. U = V.
We assume that the input distribution is isotropic, i.e. Cx = I. In this
case, the population risk reduces to

E[‖y−UU>x‖2] = Tr (Cy)− 2〈Cyx, UU>〉+ ‖UU>‖2
F

= ‖M−UU>‖2
F + Tr (Cy)− ‖Cyx‖2

F

where M =
Cyx+Cxy

2 . Ignoring the terms that are independent of the
weights matrix U, the goal is to minimize L(U) = ‖M−UU>‖2

F. Using
Dropout amounts to solving the following problem:

min
U∈Rd0×d1

Lθ(U) := ‖M−UU>‖2
F + λ

d1

∑
i=1
‖ui‖4

︸ ︷︷ ︸
R(U)

(9.11)

We can characterize the global optima of the problem above as fol-
lows.

Theorem 9.3.1. For any j ∈ [r], let κj := 1
j ∑

j
i=1 λi(Cyx). Furthermore,

define ρ := max{j ∈ [r] : λj(Cyx) >
λjκj
r+λj}. Then, if U∗ is a global

optimum of Problem 9.11, it satisfies that U∗U>∗ = S λρκρ
r+λρ

(
Cyx

)
.

Next, it is easy to see that the gradient of the objective of Prob-
lem 9.11 is given by

∇Lθ(U) = 4(UU> −M)U + 4λUdiag(U>U).

We also make the following important observation about the critical
points of Problem 9.11. Lemma 9.3.2 allows us to bound different
norms of the critical points, as will be seen later in the proofs.

Lemma 9.3.2. If U is a critical point of Problem 9.11, then it holds that
UU> � M.

Proof of Lemma 9.3.2. Since ∇Lθ(U) = 0, we have that

(M−UU>)U = λUdiag(U>U)

multiply both sides from right by U> and rearrange to get

MUU> = UU>UU> + λUdiag(U>U)U> (9.12)

Note that the right hand side is symmetric, which implies that the
left hand side must be symmetric as well, i.e.

MUU> = (MUU>)> = UU>M,

94 theory of deep learning

so that M and UU> commute. Note that in Equation (9.12), Udiag(U>U)U> �
0. Thus, MUU> � UU>UU>. Let UU> = WΓW> be a compact eigen-
decomposition of UU>. We get

MUU> = MWΓW> � UU>UU> = WΓ2W>.

Multiplying from right and left by WΓ−1 and W> respectively, we get
that W>MW � Γ which completes the proof.

We show in Section 9.3.1 that (a) local minima of Problem 9.11 in-
herit the same implicit bias as the global optima, i.e. all local minima
are equalized. Then, in Section 9.3.2, we show that for sufficiently
small regularization parameter, (b) there are no spurious local min-
ima, i.e. all local minima are global, and (c) all saddle points are
non-degenerate (see Definition 9.3.4).

9.3.1 Implicit bias in local optima

Recall that the population risk L(U) is rotation invariant, i.e. L(UQ) =

L(U) for any rotation matrix Q. Now, if the weight matrix U were
not equalized, then there exist indices i, j ∈ [r] such that ‖ui‖ > ‖uj‖.
We show that it is easy to design a rotation matrix (equal to identity
everywhere expect for columns i and j) that moves mass from ui to uj

such that the difference in the norms of the corresponding columns
of UQ decreases strictly while leaving the norms of other columns
invariant. In other words, this rotation strictly reduces the regularizer
and hence the objective. Formally, this implies the following result.

Lemma 9.3.3. All local minima of Problem 9.11 are equalized, i.e. if U
is a local optimum, then ‖ui‖ = ‖uj‖ ∀i, j ∈ [r].

Lemma 9.3.3 unveils a fundamental property of dropout. As soon
as we perform dropout in the hidden layer – no matter how small the
dropout rate – all local minima become equalized. We illustrate this
using a toy problem in Figure 9.1.

Proof of Lemma 9.3.3. We show that if U is not equalized, then any
ε-neighborhood of U contains a point with dropout objective strictly
smaller than Lθ(U). More formally, for any ε > 0, we exhibit a rota-
tion Qε such that ‖U−UQε‖F ≤ ε and Lθ(UQε) < Lθ(U). Let U be
a critical point of Problem 9.11 that is not equalized, i.e. there exists
two columns of U with different norms. Without loss of generality, let
‖u1‖ > ‖u2‖. We design a rotation matrix Q such that it is almost an
isometry, but it moves mass from u1 to u2. Consequently, the new fac-
tor becomes “less un-equalized” and achieves a smaller regularizer,

inductive biases due to algorithmic regularization 95

λ = 0 λ = 0.6 λ = 2
Figure 9.1: Optimization land-
scape (top) and contour plot
(bottom) for a single hidden-
layer linear autoencoder net-
work with one dimensional
input and output and a hid-
den layer of width r = 2 with
dropout, for different values of
the regularization parameter
λ. Left: for λ = 0 the problem
reduces to squared loss min-
imization, which is rotation
invariant as suggested by the
level sets. Middle: for λ > 0 the
global optima shrink toward
the origin. All local minima
are global, and are equalized,
i.e. the weights are parallel to
the vector (±1,±1). Right: as λ

increases, global optima shrink
further.

while preserving the value of the loss. To that end, define

Qδ :=

√

1− δ2 −δ 0

δ
√

1− δ2
0

0 0 Ir−2

and let Û := UQδ. It is easy to verify that Qε is indeed a rotation.
First, we show that for any ε, as long as δ2 ≤ ε2

2 Tr(M)
, we have Û ∈

Bε(U):

‖U− Û‖2
F =

r

∑
i=1
‖ui − ûi‖2

= ‖u1 −
√

1− δ2u1 − δu2 ‖2 + ‖u2 −
√

1− δ2u2 + δu1 ‖2

= 2(1−
√

1− δ2)(‖u1‖2 + ‖u2‖2)

≤ 2δ2 Tr(M) ≤ ε2

where the second to last inequality follows from Lemma 9.3.2, be-
cause ‖u1‖2 + ‖u2‖2 ≤ ‖U‖2

F = Tr(UU>) ≤ Tr(M), and also the fact
that 1−

√
1− δ2 = 1−1+δ2

1+
√

1−δ2 ≤ δ2.

Next, we show that for small enough δ, the value of Lθ at Û is
strictly smaller than that of U. Observe that

‖û1‖2 = (1− δ2)‖u1‖2 + δ2‖u2‖2 + 2δ
√

1− δ2u>1 u2

‖û2‖2 = (1− δ2)‖u2‖2 + δ2‖u1‖2 − 2δ
√

1− δ2u>1 u2

and the remaining columns will not change, i.e. for i = 3, · · · , r,
ûi = ui. Together with the fact that Qδ preserves the norms, i.e.
‖U‖F = ‖UQδ‖F, we get

‖û1‖2 + ‖û2‖2 = ‖u1‖2 + ‖u2‖2. (9.13)

96 theory of deep learning

Let δ = −c · sgn(u>1 u2) for a small enough c > 0 such that ‖u2‖ <

‖û2‖ ≤ ‖û1‖ < ‖u1‖. Using Equation (9.13), This implies that
‖û1‖4 + ‖û2‖4 < ‖u1‖4 + ‖u2‖4, which in turn gives us R(Û) < R(U)

and hence Lθ(Û) < Lθ(U). Therefore, a non-equalized critical point
cannot be local minimum, hence the first claim of the lemma.

9.3.2 Landscape properties

Next, we characterize the solutions to which dropout converges. We
do so by understanding the optimization landscape of Problem 9.11.
Central to our analysis, is the following notion of strict saddle property.

Definition 9.3.4 (Strict saddle point/property). Let f : U → R be
a twice differentiable function and let U ∈ U be a critical point of
f . Then, U is a strict saddle point of f if the Hessian of f at U has at
least one negative eigenvalue, i.e. λmin(∇2 f (U)) < 0. Furthermore, f
satisfies strict saddle property if all saddle points of f are strict saddle.

Strict saddle property ensures that for any critical point U that is
not a local optimum, the Hessian has a significant negative eigen-
value which allows first order methods such as gradient descent (GD)
and stochastic gradient descent (SGD) to escape saddle points and
converge to a local minimum [LSJR16, GHJY15b]. Following this idea,
there has been a flurry of works on studying the landscape of dif-
ferent machine learning problems, including low rank matrix recov-
ery [BNS16b], generalized phase retrieval problem [SQW16b], matrix
completion [GLM16b], deep linear networks [Kaw16], matrix sens-
ing and robust PCA [GJZ17b] and tensor decomposition [GHJY15b],
making a case for global optimality of first order methods.

For the special case of no regularization (i.e. λ = 0; equivalently,
no dropout), Problem 9.11 reduces to standard squared loss mini-
mization which has been shown to have no spurious local minima
and satisfy strict saddle property (see, e.g. [BH89, JGN+

17]). How-
ever, the regularizer induced by dropout can potentially introduce
new spurious local minima as well as degenerate saddle points. Our
next result establishes that that is not the case, at least when the
dropout rate is sufficiently small.

Theorem 9.3.5. Let r := Rank(M). Assume that d1 ≤ d0 and that
the regularization parameter satisfies λ < rλr(M)

(∑r
i=1 λi(M))−rλr(M)

. Then it
holds for Problem 9.11 that

1. all local minima are global,

2. all saddle points are strict saddle points.

A few remarks are in order. First, the assumption d1 ≤ d0 is by
no means restrictive, since the network map UU> ∈ Rd0×d0 has rank

inductive biases due to algorithmic regularization 97

at most d0, and letting d1 > d0 does not increase the expressivity of
the function class represented by the network. Second, Theorem 9.3.5
guarantees that any critical point U that is not a global optimum is
a strict saddle point, i.e. ∇2L(U, U) has a negative eigenvalue. This
property allows first order methods, such as dropout, to escape such
saddle points. Third, note that the guarantees in Theorem 9.3.5 hold
when the regularization parameter λ is sufficiently small. Assump-
tions of this kind are common in the literature (see, for example
[GJZ17b]). While this is a sufficient condition for the result in Theo-
rem 9.3.5, it is not clear if it is necessary.

Proof of Theorem 9.3.5. Here we outline the main steps in the proof of
Theorem 9.3.5.

1. In Lemma 9.3.3, we show that the set of non-equalized crit-
ical points does not include any local optima. Furthermore,
Lemma 9.3.6 shows that all such points are strict saddles.

2. In Lemma 9.3.7, we give a closed-form characterization of all the
equalized critical points in terms of the eigendecompostion of M.
We then show that if λ is chosen appropriately, all such critical
points that are not global optima, are strict saddle points.

3. It follows from Item 1 and Item 2 that if λ is chosen appropriately,
then all critical points that are not global optimum, are strict
saddle points.

Lemma 9.3.6. All critical points of Problem 9.11 that are not equalized, are
strict saddle points.

Proof of Lemma 9.3.6. By Lemma 9.3.3, the set of non-equalized critical
points does not include any local optima. We show that all such
points are strict saddles. Let U be a critical point that is not equalized.
To show that U is a strict saddle point, it suffices to show that the
Hessian has a negative eigenvalue. In here, we exhibit a curve along
which the second directional derivative is negative. Assume, without
loss of generality that ‖u1‖ > ‖u2‖ and consider the curve

∆(t) :=[(
√

1−t2−1)u1+tu2, (
√

1−t2−1)u2−tu1, 0d,r−2]

It is easy to check that for any t ∈ R, L(U + ∆(t)) = L(U) since
U + ∆(t) is essentially a rotation on U and L is invariant under

98 theory of deep learning

rotations. Observe that

g(t) := Lθ(U + ∆(t))

= Lθ(U) + ‖
√

1− t2u1 + tu2‖4 − ‖u1‖4 + ‖
√

1− t2u2 − tu1‖4 − ‖u2‖4

= Lθ(U)− 2t2(‖u1‖4 + ‖u2‖4) + 8t2(u1u2)
2 + 4t2‖u1‖2‖u2‖2

+ 4t
√

1− t2u>1 u2(‖u1‖2 − ‖u2‖2) + O(t3).

The derivative of g then is given as

g′(t) = −4t(‖u1‖4 + ‖u2‖4) + 16t(u1u2)
2 + 8t‖u1‖2‖u2‖2

+ 4(
√

1− t2 − t2
√

1− t2
)(u>1 u2)(‖u1‖2 − ‖u2‖2) + O(t2).

Since U is a critical point and Lθ is continuously differentiable, it
should hold that

g′(0) = 4(u>1 u2)(‖u1‖2 − ‖u2‖2) = 0.

Since by assumption ‖u1‖2 − ‖u2‖2 > 0, it should be the case that
u>1 u2 = 0. We now consider the second order directional derivative:

g′′(0) = −4(‖u1‖4 + ‖u2‖4) + 16(u1u2)
2 + 8‖u1‖2‖u2‖2

= −4(‖u1‖2 − ‖u2‖2)2 < 0

which completes the proof.

We now focus on the critical points that are equalized, i.e. points U

such that ∇Lθ(U) = 0 and diag(U>U) =
‖U‖2

F
d1

I.

Lemma 9.3.7. Let r := Rank(M). Assume that d1 ≤ d0 and λ <
rλr

∑r
i=1(λi−λr)

. Then all equalized local minima are global. All other equalized
critical points are strict saddle points.

Proof of Lemma 9.3.7. Let U be a critical point that is equalized. Fur-
thermore, let r′ be the rank of U, and U = WΣV> be its rank-r′ SVD,
i.e. W ∈ Rd0×r′ , V ∈ Rd1×r′ are such that U>U = V>V = Ir′ and
Σ ∈ Rr′×r′ , is a positive definite diagonal matrix whose diagonal
entries are sorted in descending order. We have:

∇Lθ(U) = 4(UU> −M)U + 4λUdiag(U>U) = 0

=⇒ UU>U +
λ‖U‖2

F
d1

U = MU

=⇒WΣ3V> +
λ‖Σ‖2

F
d1

WΣV> = MWΣV>

=⇒ Σ2 +
λ‖Σ‖2

F
d1

I = W>MW

inductive biases due to algorithmic regularization 99

Since the left hand side of the above equality is diagonal, it implies
that W ∈ Rd0×r′ corresponds to some r′ eigenvectors of M. Let
E ⊆ [d0], |E | = r′ denote the set of eigenvectors of M that are present
in W. The above equality is equivalent of the following system of
linear equations:

(I +
λ

d1
11
>)diag(Σ2) = ~λ,

where ~λ = diag(W>MW). The solution to the linear system of
equations above is given by

diag(Σ2) = (I− λ

d1 + λr′
)~λ = ~λ− λ ∑r′

i=1 λi

d1 + λr′
1r′ . (9.14)

Thus, the set E belongs to one of the following categories:

0. E = [r′], r′ > ρ

1. E = [r′], r′ = ρ

2. E = [r′], r′ < ρ

3. E 6= [r′]

We provide a case by case analysis for the above partition here.
Case 0. [E = [r′], r′ > ρ]. We show that E cannot belong to this class,
i.e. when E = [r′], it should hold that r′ ≤ ρ. To see this, consider the
r′-th linear equation in Equation (9.14):

σ2
r′ = λr′ −

λ ∑r′
i=1 λi

d1 + λr′
.

Since Rank U = r′, it follows that σr′ > 0, which in turn implies that

λr′ >
λ ∑r′

i=1 λi

d1 + λr′
=

λr′κr′

d1 + λr′
.

It follows from maximality of ρ in Theorem 9.3.1 that r′ ≤ ρ.
Case 1. [E = [r′], r′ = ρ] When W corresponds to the top-ρ eigenvec-
tors of M, we retrieve a global optimum described by Theorem 9.3.1.
Therefore, all such critical points are global minima.
Case 2. [E = [r′], r′ < ρ] Let Wd0 := [W, W⊥] be a complete eigen-
basis for M corresponding to eigenvalues of M in descending order,
where W⊥ ∈ Rd0×d0−r′ constitutes a basis for the orthogonal sub-
space of W. For rank deficient M, W⊥ contains the null-space of M,
and hence eigenvectors corresponding to zero eigenvalues of M. Sim-
ilarly, let V⊥ ∈ Rd1×d1−r′ span the orthogonal subspace of V, such
that Vd1 := [V, V⊥] forms an orthonormal basis for Rd1 . Note that
both W⊥ and V⊥ are well-defined since r′ ≤ min{d0, d1}. Define

100 theory of deep learning

U(t) = Wd0 Σ′V>d1
where Σ′ ∈ Rd0×d1 is diagonal with non-zero

diagonal elements given as σ′i =
√

σ2
i + t2 for i ≤ d1. Observe that

U(t)>U(t) = VΣ2V> + t2V>d1
Vd1 = U>U + t2Id1 .

Thus, the parametric curve U(t) is equalized for all t. The population
risk at U(t) equals:

L(U(t)) =
d1

∑
i=1

(λi − σ2
i − t2)2 +

d0

∑
i=d1+1

λ2
i

= L(U) + d1t4 − 2t2
d1

∑
i=1

(λi − σ2
i).

Furthermore, since U(t) is equalized, we obtain the following form
for the regularizer:

R(U(t)) =
λ

d1
‖U(t)‖4

F =
λ

d1

(
‖U‖2

F + d1t2
)2

= R(U) + λd1t4 + 2λt2‖U‖2
F.

Define g(t) := L(U(t)) + R(U(t)). We have that

g(t) = L(U) + R(U) + d1t4 − 2t2
d1

∑
i=1

(λi − σ2
i) + λd1t4 + 2λt2‖U‖2

F.

It is easy to verify that g′(0) = 0. Moreover, the second derivative of g
at t = 0 is given as:

g′′(0) = −4
d1

∑
i=1

(λi − σ2
i)+ 4λ‖U‖2

F = −4
d1

∑
i=1

λi + 4(1+λ)‖U‖2
F (9.15)

We use ‖U‖2
F = ∑r′

i=1 σ2
i and Equation (9.14) to arrive at

‖U‖2
F = trΣ2 =

r′

∑
i=1

(λi−
λ ∑r′

j=1 λj

d1 + λr′
) = (

r′

∑
i=1

λi)(1−
λr′

d1 + λr′
) =

d1 ∑r′
i=1 λi

d1 + λr′

Plugging back the above equality in Equation (9.15), we get

g′′(0) = −4
d1

∑
i=1

λi + 4
d1 + d1λ

d1 + λr′
r′

∑
i=1

λi = −4
d1

∑
i=r′+1

λi + 4
(d1 − r′)λ
d1 + λr′

r′

∑
i=1

λi

To get a sufficient condition for U to be a strict saddle point, it suf-

inductive biases due to algorithmic regularization 101

fices that g′′(t) be negative at t = 0, i.e.

g′′(0) < 0 =⇒ (d1 − r′)λ
d1 + λr′

r′

∑
i=1

λi <
d1

∑
i=r′+1

λi

=⇒ λ <
(d1 + λr′)∑r

i=r′+1 λi

(d1 − r′)∑r′
i=1 λi

=⇒ λ(1−
r′ ∑d1

i=r′+1 λi

(d1 − r′)∑r′
i=1 λi

) <
d1 ∑d1

i=r′+1 λi

(d1 − r′)∑r′
i=1 λi

=⇒ λ <
d1 ∑d1

i=r′+1 λi

(d1 − r′)∑r′
i=1 λi − r′ ∑d1

i=r′+1 λi

=⇒ λ <
d1h(r′)

∑r′
i=1 (λi − h(r′))

where h(r′) :=
∑

d1
i=r′+1

λi

d1−r′ is the average of the tail eigenvalues
λr′+1, . . . , λd1 . It is easy to see that the right hand side is monoton-
ically decreasing with r′, since h(r′) monotonically decreases with
r′. Hence, it suffices to make sure that λ is smaller than the right
hand side for the choice of r′ = r− 1, where r := Rank(M). That is,
λ < rλr

∑r
i=1(λi−λr)

.

Case 3. [E 6= [r′]] We show that all such critical points are strict sad-
dle points. Let w′ be one of the top r′ eigenvectors that are missing in
W. Let j ∈ E be such that wj is not among the top r′ eigenvectors of
M. For any t ∈ [0, 1], let W(t) be identical to W in all the columns but
the jth one, where wj(t) =

√
1− t2wj + tw′. Note that W(t) is still an

orthogonal matrix for all values of t. Define the parametrized curve
U(t) := W(t)ΣV> for t ∈ [0, 1] and observe that:

‖U−U(t)‖2
F = σ2

j ‖wj −wj(t)‖2

= 2σ2
j (1−

√
1− t2) ≤ t2 Tr M

That is, for any ε > 0, there exist a t > 0 such that U(t) belongs to
the ε-ball around U. We show that Lθ(U(t)) is strictly smaller than
Lθ(U), which means U cannot be a local minimum. Note that this
construction of U(t) guarantees that R(U′) = R(U). In particular, it
is easy to see that U(t)>U(t) = U>U, so that U(t) remains equalized
for all values of t. Moreover, we have that

Lθ(U(t))− Lθ(U) = ‖M−U(t)U(t)>‖2
F − ‖M−UU>‖2

F

= −2 Tr(Σ2W(t)>MW(t)) + 2 Tr(Σ2W>MW)

= −2σ2
j t2(wj(t)>Mwj(t)−w>j Mwj) < 0,

where the last inequality follows because by construction wj(t)>Mwj(t) >
w>j Mwj. Define g(t) := Lθ(U(t)) = L(U(t)) + R(U(t)). To see that

102 theory of deep learning

such saddle points are non-degenerate, it suffices to show g′′(0) < 0.
It is easy to check that the second directional derivative at the origin
is given by

g′′(0) = −4σ2
j (wj(t)>Mwj(t)−w>j Mwj) < 0,

which completes the proof.

9.4 Role of Parametrization

For least squares linear regression (i.e., for k = 1 and u = W>1 ∈ Rd0

in Problem 9.8), we can show that using dropout amounts to solving
the following regularized problem:

min
u∈Rd0

1
n

n

∑
i=1

(yi − u>xi)
2 + λu>Ĉu.

All the minimizers of the above problem are solutions to the fol-
lowing system of linear equations (1 + λ)X>Xu = X>y, where
X = [x1, · · · , xn]> ∈ Rn×d0 , y = [y1, · · · , yn]> ∈ Rn×1 are the design
matrix and the response vector, respectively. Unlike Tikhonov reg-
ularization which yields solutions to the system of linear equations
(X>X + λI)u = X>y (a useful prior, discards the directions that ac-
count for small variance in data even when they exhibit good discrim-
inability), the dropout regularizer manifests merely as a scaling of the
parameters. This suggests that parametrization plays an important
role in determining the nature of the resulting regularizer. However,
a similar result was shown for deep linear networks [MA19] that
the data dependent regularization due to dropout results in merely
scaling of the parameters. At the same time, in the case of matrix
sensing we see a richer class of regularizers. One potential explana-
tion is that in the case of linear networks, we require a convolutional
structure in the network to yield rich inductive biases. For instance,
matrix sensing can be written as a two layer network in the following
convolutional form:

〈UV>, A〉 = 〈U>, V>A>〉 = 〈U>, (I⊗V>)A>〉.

9.4.1 Related Work

10
Unsupervised learning: Overview

Much of the book so far concerned supervised learning —i.e., learn-
ing to classify inputs into classes, where the training data consists
of sampled inputs together with their correct labels. This chapter is
an introduction to unsupervised learning, where one has randomly
sampled datapoints but no labels or classes.

10.0.1 Possible goals of unsupervised learning

Learn hidden/latent structure of data. An example would be Principal
Component Analysis (PCA), concerned with finding the most
important directions in the data. Other examples of structure
learning can include sparse coding (aka dictionary learning) or
nonnegative matrix factorization (NMF).

Learn the distribution of the data. A classic example is Pearson’s 1893

contribution to theory of evolution by studying data about the crab
population on Malta island. Biologists had sampled a thousand
crabs in the wild, and measured 23 attributes (e.g., length, weight,
etc.) for each. The presumption was that these datapoints should
exhibit Gaussian distribution, but Pearson could not find a good fit
to a Gaussian. He was able to show however that the distribution
was actualyy mixture of two Gaussians. Thus the population
consisted of two distinct species, which had diverged not too long
ago in evolutionary terms.

In general, in density estimation the hypothesis is that the dis-
tribution of data is pθ(h, x) where θ is some unknown vector of
parameters, x is the observable (i.e., data) and h are some hidden
variables, often called latent variables. Then the density distribu-
tion of x is

∫
pθ(h, x)dh. In the crab example, the distribution a

mixture of Gaussians N (µ1, Σ1),N (µ2, Σ2) where the first con-
tributes ρ1 fraction of samples and the other contributes 1− ρ2

fraction. Then θ vector consists of parameters of the two Gaussians

104 theory of deep learning

Figure 10.1: Visualization of
Pearson’s Crab Data as mix-
ture of two Gaussians. (Credit:
MIX homepage at McMaster
University.)

as well as ρ1. The visible part x consists of attribute vector for a
crab. Hidden vector h consists of a bit, indicating which of the two
Gaussians this x was generated from, as well as the value of the
gaussian random variable that generated x.

The goal is to learn this description of the distribution given i.i.d.
samples of x.

Learning good representation/featurization of data For example, the pixel
representation of images may not be very useful in other tasks
and one may desire a more “high level” representation that allows
downstream tasks to be solved in a data-efficient way. One would
hope to learn such featurization using unlabeled data.

In some settings, featurization is done via distribution learning:
one assumes a data distribution pθ(h, x) as above and the featur-
ization of the visible samplepoint x is assumed to be the hidden
variable h that was used to generate it. More precisely, the hidden
variable is a sample from the conditional distribution p(h|x). This
view of representation learning is sometimes called an autoencoder
in deep learning.

Figure 10.2: Autoencoder
defined using a density distri-
bution p(h, x), where h is the
latent feature vector correspond-
ing to visible vector x. The
process of computing h given
x is called “encoding” and the
reverse is called “decoding.” In
general applying the encoder
on x followed by the decoder
would not give x again, since
the composed transformation is
a sample from a distribution.

For example, topic models are a simple probabilistic model of
text generation, where x is some piece of text, and h is the propor-
tion of specific topics (“sports,” “politics” etc.). Then one could
imagine that h is some short and more high-level descriptor of x.

Many techniques for density estimation —such as variational
methods, described laterr —also give a notion of a representation: the

unsupervised learning: overview 105

method for learning the distribution often also come with a candi-
date distribution for p(h|x). This is perhaps why people sometimes
conflate representation learning with density estimation.

10.1 Training Objective for Density estimation: Log Likelihood

From the above description it is clear that one way to formalize
“structure ”of data is to think of it as being i.i.d. samples S =

{x1, x2, ...xm} samples from an underlying distribution, and to learn
this underlying distribution. We assume the unknown distribution
has a known parametric form pθ(x) which is the probability of ob-
serving x given the parameters of the model, θ. But θ is unknown.
For example, θ could be parameters of an unknown deep net gθ with
a certain prescribed architecture, and x is generated by using an
h ∼ N (0, I) and outputting gθ(h).

We wish to infer the best θ given the i.i.d. samples (“evidence”)
from the distribution. One standard way to quantify “best” is pick θ

is according to the maximum likelihood principle.

max
θ

∏
x(i)∈S

pθ(x(i)) (10.1)

Because log is monotone, this is also equivalent to minimizing the
log likelihood, which is a sum over training samples and thus similar
in form to the training objectives seen so far in the book:

max
θ

∑
x(i)∈S

log pθ(x(i)) (log likelihood) (10.2)

Thus it is always possible to fit such a parametric form. The ques-
tion is how well this learnt distribution fits the data distribution.
We need a notion of “goodness” for unsupervised learning that is
analogous to generalization in supervised learning. The obvious one
is log likelihood of held-out data: reserve some of the data for testing
and compare the average log likelihood of the model on training data
with that on test data.

Example 10.1.1. The log likelihood objective makes sense for fitting any
parametric model to the training data. For example, it is always possible to
fit a simple Gaussian distribution N (µ, σ2 I) to the training data in <d. The
log-likehood objective is

∑
i

|xi − µ|2
σ2 ,

which is minimized by setting µ to 1
m ∑i xi and σ2 to ∑i

1
n |xi − µ|2.

Suppose we carry this out for the distribution of real-life images. What do
we learn? The mean µ will be the vector of average pixel values, and σ2 will

106 theory of deep learning

correspond to the average variance per pixel. Thus a random sample from
the learn distribution will look like some noisy version of the average pixel.

This example also shows that matching loglikelihood for the average
training and held-out sample is insufficient for good distribution learning.
The gaussian model only has d + 1 parameters and simple concentration
bounds show under fairly general conditions (such as coordinates of xi’s
being bounded) that one the number of training samples is moderately high
then the log likelihood of the average test sample is similar to that of the
average training sample. However, the learned distribution may be nothing
like the true distribution.

This is reminiscent of the situation in supervised learning whereby
a nonsensical model — one that outputs random labels—has excellent
generalization as well.

As in supervised learning, one has to keep track of training log-
likelihood in addition to generalization, and choose among models
that maximise it. In general this is computationally intractable for
even simple settings.

Theorem 10.1.2. The θ maximizing (10.2) minimizes the KL divergence
KL(Q||P) where P is the true distribution and Q is the learnt distribution.

Proof. TBD

10.2 Variational methods

The variational method leverages duality, a widespread principle
in math. You may have seen LP duality in an algorithms class. The
name “variational”in the title refers to calculus of variations, the part
of math where such principles are studied.

This method maintains some estimate q(h|x) of p(h|x) and im-
proves it. One useful fact is that:

log p(x) ≥ Eq(h|x)[log(p(x, h))] + H[q(h|x)], ∀q(h|x) (10.3)

where H is the Shannon Entropy.
We would like to prove this bound on log p(x) and resort to max-

imizing the lower bound given in (10.3), referred to as the evidence
lower bound (ELBO). Towards this end we will introduce the Kull-
back Leibler divergence (KL) between two distributions given by

KL[q(h|x) || p(h|x)] = Eq(h|x)

[
log

q(h|x)
p(h|x)

]
(10.4)

Moreover, p(x)p(h|x) = p(x, h) is true by Bayes Rule. Then we can
see that

unsupervised learning: overview 107

KL[q(h|x)|p(h|x)] = Eq(h|x)[log
q(h|x)
p(x, h)

· p(x)] (10.5)

= Eq(h|x)[log(q(h|x))]︸ ︷︷ ︸
−H(q(h|x))

−Eq(h|x)[log(p(x, h))] + Eq(h|x)[log p(x)]

(10.6)

But we know that the KL divergence is always nonnegative, so we
get:

Eq(h|x)[log(p(x))]−Eq(h|x)[log(p(x, h))]− H(q(h|x)) ≥ 0 (10.7)

which is the same as ELBO (10.3) since log(p(x)) is constant over
q(h|x), hence is equal to its expectation.

The variational methods use some form of gradient descent or
local improvement to improve q(h|x). For details see the blog post on
offconvex.org by Arora and Risteski.

10.3 Autoencoders

Autoencoders are a subcase of density estimation popular in the
neural nets world. It is assumed that the model first generates a
latent representation from a simple distribution, and then uses some
simple circuit to map it to the visible datapoint x. This is called
decoder. There is a companion encoder circuit that maps x to a latent
representation. The pair of circuits is called an autoencoder.

In other words, the autoencoder is trying to learn an approxima-
tion to the identity function, so as to output x′ that is similar to x.
In order to force the algorithm to learn a function different from
the identity function, we place constraints on the model, such as
by limiting the representation z to be of low dimensionality. In the
simplest example, assume k vectors u1, ..., uk ∈ Rn, where k� n, and
x = ∑i αiui + σ, where σ is Gaussian noise. By applying rank-k PCA,
one could recover values in span(u1, ..., uk). Thus PCA/SVD can be
seen as a simple form of autoencoder learning.

An autoencoder can also be seen as an example of the so-called
manifold view, whereby data is assumed to have a latent representa-
tion z which has a simpler distribution than x.

10.3.1 Sparse autoencoder

Our argument above relied on the size of the encoded representation
of the data to be small. But even when this is not the case, (i.e.,
k > n), we can still learn meaningful structure, by imposing other

108 theory of deep learning

constraints on the network. In particular, we could impose sparsity
constraints on the mapped value. Essentially, if x = ∑i αiui + σ as
above, we could enforce α to be r-sparse, i.e., allowing only r non-
zero values. Examples of "sparse coding" include [? ?].

10.3.2 Topic models

Topic models are used to learn the abstract "topics" that occur in a
collection of documents, and uncover hidden semantic structures.
They can also been fitted into the autoencoder view. Assume the
documents are given in a bag-of-words representation. As defined
above, we have u1, ..., uk ∈ Rn vectors, with k < n. We enforce that
∑i αi = 1, such that αi is the coefficient of the i-th topic. For example,
a news article might be represented as a mixture of 0.7 of the topic
politics and 0.3 of the topic economy. The goal in topic modeling is,
when given a large enough collection of documents, to discover the
underlying set of topics used to generate them, both efficiently and
accurately. A practical algorithm for topic modeling with provable
guarantees is given by [?].

10.4 Variational Autoencoder (VAE)

In the context of deep learning, Variational Autoencoders (VAEs)
1 are one of the earliest models that have demonstrated promising 1

qualitative performance in learning complicated distributions. As
its name suggests two core classical ideas rest behind the design of
VAEs: autoencoders – the original data x ∈ Rn is mapped into a high-
level descriptor z ∈ Rd on a low dimensional (hopefully) meaningful
manifold; variational inference – the objective to maximize is a lower
bound on log-likelihood instead of the log-likelihood itself.

Recall that in density estimation we are given a data sample
x1, . . . , xm and a parametric model pθ(x), and our goal is to maximize
the log-likelihood of the data: maxθ ∑m

i=1 log pθ(xi). As a variational
method, VAEs use the evidence lower bound (ELBO) as a training
objective instead. For any distributions p on (x, z) and q on z|x,
ELBO is derived from the fact that KL(q(z|x) || p(z|x)) ≥ 0

log p(x) ≥ Eq(z|x)[log p(x, z)]−Eq(z|x)[log q(z|x)] = ELBO (10.8)

where equality holds if and only if q(z|x) ≡ p(z|x). In the VAE
setting, the distribution q(z|x) acts as the encoder, mapping a
given data point x to a distribution of high-level descriptors, while
p(x, z) = p(z)p(x|z) acts as the decoder, reconstructing a distribution
on data x given a random seed z ∼ p(z). Deep learning comes in
play for VAEs when constructing the aforementioned encoder q and

unsupervised learning: overview 109

decoder p. In particular,

q(z|x) = N (z; µx, σ2
x Id), µx, σx = Eφ(x) (10.9)

p(x|z) = N (x; µz, σ2
z In), µz, σz = Dθ(z), p(z) = N (z; 0, Id)

(10.10)

where Eφ and Dθ are the encoder and decoder neural networks pa-
rameterized by φ and θ respectively, µx, µz are vectors of correspond-
ing dimensions, and σx, σz are (nonnegative) scalars. The particular
choice of Gaussians is not a necessity in itself for the model and can
be replaced with any other relevant distribution. However, Gaussians
provide, as is often the case, computational ease and intuitive back-
ing. The intuitive argument behind the use of Gaussian distributions
is that under mild regularity conditions every distribution can be
approximated (in distribution) by a mixture of Gaussians. This fol-
lows from the fact that by approximating the CDF of a distribution
by step functions one obtains an approximation in distribution by
a mixture of constants, i.e. mixture of Gaussians with ≈ 0 variance.
The computational ease, on the other hand, is more clearly seen in
the training process of VAEs.

10.4.1 Training VAEs

As previously mentioned, the training of variational autoencoders in-
volves maximizing the RHS of (10.8), the ELBO, over the parameters
φ, θ under the model described by (10.9), (10.10). Given that the para-
metric model is based on two neural networks Eφ, Dθ , the objective
optimization is done via gradient-based methods. Since the objective
involves expectation over q(z|x), computing an exact estimate of it,
and consequently its gradient, is intractable so we resort to (unbiased)
gradient estimators and eventually use a stochastic gradient-based
optimization method (e.g. SGD).

In this section, use the notation µφ(x), σφ(x) = Eφ(x) and
µθ(z), σθ(z) = Dθ(z) to emphasize the dependence on the parameters
φ, θ. Given training data x1, . . . , xm ∈ Rn, consider an arbitrary data
point xi, i ∈ [m] and pass it through the encoder neural network Eφ to
obtain µφ(xi), σφ(xi). Next, sample s points zi1, . . . , zis, where s is the
batch size, from the distribution q(z|x = xi) = N (z; µφ(xi), σφ(xi)

2 Id)

via the reparameterization trick 2 by sampling ε1, . . . , εs ∼ N (0, Id) 2

from the standard Gaussian and using the transformation zij =

µφ(xi) + σφ(xi) · εj. The reason behind the reparameterization trick
is that the gradient w.r.t. parameter φ of an unbiased estimate of ex-
pectation over a general distribution qφ is not necessarily an unbiased
estimate of the gradient of expectation. This is the case, however,
when the distribution qφ can separate the parameter φ from the ran-

110 theory of deep learning

domness in the distribution, i.e. it’s a deterministic transformation
that depends on φ of a parameter-less distribution. With the s i.i.d.
samples from q(z|x = xi) we obtain an unbiased estimate of the
objective ELBO

s

∑
j=1

log p(xi, zij)−
s

∑
j=1

log q(zij|xi) =
s

∑
j=1

[log p(xi|zij)+ log p(zij)− log q(zij|xi)]

(10.11)
Here the batch size s indicates the fundamental tradeoff between
computational efficiency and accuracy in estimation. Since each
of the terms in the sum in (10.11) is a Gaussian distribution, we
can write the ELBO estimate explicitly in terms of the parameter-
dependent µφ(xi), σφ(xi), µθ(zij), σθ(zij) (while skipping some con-
stants). A single term for j ∈ [s] is given by

−1
2

[
||xi − µθ(zij)||2

σθ(zij)2 + n log σθ(zij)
2 + ||zij||2 −

||zij − µφ(xi)||2

σφ(xi)2 − d log σφ(xi)
2

]
(10.12)

Notice that (10.12) is differentiable with respect to all the compo-
nents µφ(xi), σφ(xi), µθ(zij), σθ(zij) while each of these components,
being an output of a neural network with parameters φ or θ, is dif-
ferentiable with respect to the parameters φ or θ. Thus, the tractable
gradient of the batch sum (10.11) w.r.t. φ (or θ) is, due to the reparame-
terization trick, an unbiased estimate of ∇φELBO (or ∇θELBO) which
can be used in any stochastic gradient-based optimization algorithm
to maximize the objective ELBO and train the VAE.

10.5 Main open question

Main open question for this lecture is to design methods with prov-
able guarantees for the learning problems discussed here. Can we
show that VAEs correctly (and efficiently) learn simple families of
probability distributions?

There were notable successes in analysis of method of moments
for learning probability distributions, as mentioned above. Varia-
tional methods rely upon gradient descent, which seems harder to
analyse as of now.

11
Generative Adversarial Nets

Chapter 10 described some classical approaches to generative models,
which are often trained using a log-likelihood approach. We also saw
that they often do not suffice for high-fidelity learning of complicated
distributions such as the distribution of real-life images. Generative
Adversarial Nets (GANs) is an approach that generates more realistic
samples. For convenience in this chapter we assume the model is
trying to generate images. The following would be one standard
interpretation of what it means for the distribution produced by the
model to be realistic.

Interpretation 1: The distributions of real and synthetic images are, as
distributions in <d, are close in some statistical measure.

The main novelty in GANs is a different interpretation that lever-
ages the power of supervised deep learning.

Interpretation 2: If we try to train a powerful deep net to distinguish
between real and synthetic images, by training it to output “1” on a train-
ing set of real images and “0” on a training set of synthetic images from
our model, then such a net fails to have significant success in distinguishing
among held-out real vs synthetic images at test time.

Is it possible that the two interpretations are interrelated? The sim-
plistic answer is yes: a rich mathematical framework of transportation
distances can give a relationship between the two intepretations. A
more nuanced answer is “maybe”, at least if one treats deep nets as
black boxes with limited representation power. Then a simple but
surprising result shows that the richness of the synthetic distribution
can be quite limited —and one has to worry about mode collapse.

11.1 Basic definitions

A generative model Gθ (where θ is the vector of parameters) is a
deep net that maps from <k to <d. Given a random seed h —which
is usually a sample from a multivariate Normal distribution—it
produces a vector string Gθ(h) that is an image.

112 theory of deep learning

Model Gθ will be trained using a finite set of training examples
from some real-life distribution of images Dreal (e.g., pictures of
celebrities from gossip magazines). Let Dsynth be the distribution it
generates at the end of training (meaning the distribution of Gθ(h)
where h is drawn from the normal distribution).

12
Representation Learning

12.1 Adversarial Machine Learning

We provide the definition of adversarial example problem for deep
neural network,

Definition 12.1.1 (Adversarial example, finding the closest adversar-
ial example). Given a function f : Rd → {0, 1} and an input x0 ∈ Rd, the
goal is to output the smallest r > 0 such that ∃x′ ∈ B(x0, r, `∞) satisfying
f (x′) 6= f (x0).

An alternative formulation could be the following

Definition 12.1.2. Adversarial example, finding the largest safe region
Given a function f : Rd → {0, 1} and an input x0 ∈ Rd, the goal
is to output the largest r > 0 such that ∀x′ ∈ B(x0, r, `∞) satisfying
f (x′) = f (x0).

The above formulation is the exact version, in practice, we might
not always need the exact solution. It is natural to define the approxi-
mate version of the problem:

Definition 12.1.3. Given a function f : Rd → {0, 1} and an input
x0 ∈ Rd. Let r∗ denote the largest r > 0 such that ∀x′ ∈ B(x0, r, `∞)

satisfying f (x′) = f (x0). The goal is to output r such that α · r∗ ≤ r ≤ r∗,
where α ∈ (0, 1) is the approximation ratio.

Katz, Barrett, Dill, Julian, Kochenderfer, CAV’17 [cite] proved that,
assuming P 6=NP, there is no polynomial time that computes r exactly.
Further, Weng et al. [cite] shows that assuming ETH, there is no
polynomial that gives an 1/ log d approximation.

13
Examples of Theorems, Proofs, Algorithms, Tables, Fig-
ures

In this chapter, Zhao provide examples of many things, like The-
orems, Lemmas, Algorithms, Tables, and Figures. If anyone has
question, feel free to contact Zhao directly.

13.1 Example of Theorems and Lemmas

We provide some examples

Theorem 13.1.1 (d-dimension sparse Fourier transform). There is an
algorithm (procedure FourierSparseRecovery in Algorithm 2) that
runs in ??? times and outputs ??? such that ???.

Note that, usually, if we provide the algorithm of the Theo-
rem/Lemma. Theorem should try to ref the corresponding Algo-
rithm.

For the name of Theorem/Lemma/Corollary ..., let us only capital-
ize the first word,

Lemma 13.1.2 (Upper bound on the gradient).

Theorem 13.1.3 (Main result).

13.2 Example of Long Equation Proofs

We can rewrite ‖Ax′ − b‖2
2 in the following sense,

‖Ax′ − b‖2
2 = ‖Ax′ − Ax∗ + AA†b− b‖2

2

= ‖Ax∗ − Ax′‖2
2 + ‖Ax∗ − b‖2

2

= ‖Ax∗ − Ax′‖2
2 + OPT2

where the first step follows from x∗ = A†b, the second step follows
from Pythagorean Theorem, and the last step follows from OPT :=
‖Ax∗ − b‖2.

116 theory of deep learning

13.3 Example of Algorithms

Here is an example of algorithm. Usually the algorithm should
ref some Theorem/Lemma, and also the corresponding Theo-
rem/Lemma should ref back. This will be easier to verify the cor-
rectness.

Algorithm 2 Fourier Sparse Recovery Algorithm

1: procedure FourierSparseRecovery(x, n, k, µ, R∗) .

Theorem 13.1.1
2: Require that µ = 1√

k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /µ

3: H ← 5, ν← µR∗/2, y←~0
4: Let T = {T (1), · · · , T (H)} where each T (h) is a list of i.i.d.

uniform samples in [p]d

5: while true do
6: ν′ ← 21−Hν

7: z← LinfinityReduce({xt}t∈T)

8: if ν′ ≤ µ then return y + z . We found the solution
9: y′ ←~0

10: for f ∈ supp(y + z) do
11: y′f ← Π0.6ν(y f + z f) . We want ‖x̂− y′‖∞ ≤ ν and the

dependence between y′ and T is under control
12: end for
13: y← y′, ν← ν/2
14: end while
15: end procedure

examples of theorems, proofs, algorithms, tables, figures 117

13.4 Example of Figures

We should make sure all the pictures are plotted by the same soft-
ware. Currently, everyone feel free to include their own picture. Zhao
will re-plot the picture by tikz finally.

x0

x1

x2

x3

xT

z0

z1

z2

z3

zT

y2,1y2,2y2,3y2,4

Figure 13.1: A chasing sequence

118 theory of deep learning

13.5 Example of Tables

Reference Samples Time Filter RIP
[GMS05] k logO(d) n k logO(d) n Yes No
[CT06] k log6 n poly(n) No Yes
[RV08] k log2 k log(k log n) log n Õ(n) No Yes
[HIKP12] k logd n log(n/k) k logd n log(n/k) Yes No
[CGV13] k log3 k log n Õ(n) No Yes
[IK14] 2d log dk log n Õ(n) Yes No
[Bou14] k log k log2 n Õ(n) No Yes
[HR16] k log2 k log n Õ(n) No Yes
[Kap16] 2d2

k log n 2d2
k logd+O(1) n Yes No

[KVZ19] k3 log2 k log2 n k3 log2 k log2 n Yes Yes
[NSW19] k log k log n Õ(n) No No

Table 13.1: We ignore the O
for simplicity. The `∞/`2

is the strongest possible
guarantee, with `2/`2 com-
ing second, `2/`1 third and
exactly k-sparse being the
weaker. We also note that all
[RV08, CGV13, Bou14, HR16]
obtain improved analyses of
the Restricted Isometry prop-
erty; the algorithm is suggested
and analyzed (modulo the RIP
property) in [BD08]. The work
in [HIKP12] does not explicitly
state the extension to the d-
dimensional case, but can easily
be inferred from the arguments.
[HIKP12, IK14, Kap16, KVZ19]
work when the universe size in
each dimension are powers of 2.

13.6 Exercise

This section provides several examples of exercises.

Exercises

Exercise 13.6-1: Solve the following equation for x ∈ C, with C the
set of complex numbers:

5x2 − 3x = 5 (13.1)

Exercise 13.6-2: Solve the following equation for x ∈ C, with C the
set of complex numbers:

7x3 − 2x = 1 (13.2)

Bibliography

[ADG+
16] Marcin Andrychowicz, Misha Denil, Sergio Gomez,

Matthew W Hoffman, David Pfau, Tom Schaul, and
Nando de Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information
Processing Systems, 2016.

[ADH+
19a] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and

Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer
neural networks. In International Conference on Machine
Learning, pages 322–332, 2019.

[ADH+
19b] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Rus-

lan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. arXiv
preprint arXiv:1904.11955, 2019.

[ADH+
19c] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Rus-

lan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. arXiv
preprint arXiv:1904.11955, 2019.

[ADL+
19] Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan

Salakhutdinov, Ruosong Wang, and Dingli Yu. Harness-
ing the power of infinitely wide deep nets on small-data
tasks. arXiv preprint arXiv:1910.01663, 2019.

[BBV16] Afonso S Bandeira, Nicolas Boumal, and Vladislav
Voroninski. On the low-rank approach for semidefinite
programs arising in synchronization and community
detection. In Conference on learning theory, pages 361–382,
2016.

[BD08] Thomas Blumensath and Mike E Davies. Iterative
thresholding for sparse approximations. Journal of Fourier
analysis and Applications, 14(5-6):629–654, 2008.

120 theory of deep learning

[Ber24] Sergei Bernstein. On a modification of chebyshev’s
inequality and of the error formula of laplace. Ann. Sci.
Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[BH89] Pierre Baldi and Kurt Hornik. Neural networks and
principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53–58, 1989.

[BM02] Peter L Bartlett and Shahar Mendelson. Rademacher
and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–
482, 2002.

[BM03] P. L. Bartlett and S. Mendelson. Rademacher and
Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 2003.

[BNS16a] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Global optimality of local search for low rank
matrix recovery. In Advances in Neural Information
Processing Systems, pages 3873–3881, 2016.

[BNS16b] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Global optimality of local search for low rank
matrix recovery. In Advances in Neural Information
Processing Systems (NIPS), pages 3873–3881, 2016.

[Bou14] Jean Bourgain. An improved estimate in the restricted
isometry problem. In Geometric Aspects of Functional
Analysis, pages 65–70. Springer, 2014.

[BR89] Avrim Blum and Ronald L Rivest. Training a 3-node
neural network is np-complete. In Advances in neural
information processing systems, pages 494–501, 1989.

[Bre67] L. M. Bregman. The relaxation method of finding the
common point of convex sets and its application to the
solution of problems in convex programming. USSR
computational mathematics and mathematical physics, 1967.

[BT03] A. Beck and M. Teboulle. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[CCS+16] Pratik Chaudhari, Anna Choromanska, Stefano Soatto,
Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer

bibliography 121

Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-
sgd: Biasing gradient descent into wide valleys. arXiv
preprint arXiv:1611.01838, 2016.

[CGV13] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya
Velingker. Restricted isometry of Fourier matrices and
list decodability of random linear codes. SIAM Journal on
Computing, 42(5):1888–1914, 2013.

[Che52] Herman Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sum of observa-
tions. The Annals of Mathematical Statistics, pages 493–507,
1952.

[CLG01] Rich Caruana, Steve Lawrence, and C Lee Giles. Over-
fitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Advances in Neural
Information Processing Systems (NIPS), pages 402–408,
2001.

[CT06] Emmanuel J Candes and Terence Tao. Near-optimal
signal recovery from random projections: Universal
encoding strategies? IEEE transactions on information
theory, 52(12):5406–5425, 2006.

[DHS+19] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov,
Barnabas Poczos, Ruosong Wang, and Keyulu Xu. Graph
neural tangent kernel: Fusing graph neural networks
with graph kernels. In Advances in Neural Information
Processing Systems, pages 5724–5734, 2019.

[DLL+
18] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang,

and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. arXiv preprint arXiv:1811.03804,
2018.

[DPBB17] Laurent Dinh, Razvan Pascanu, Samy Bengio, and
Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, 2017.

[DZPS18] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti
Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint
arXiv:1810.02054, 2018.

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti
Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint
arXiv:1810.02054, 2019.

122 theory of deep learning

[EHJT04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. The Annals of statistics, 2004.

[Fri01] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, 2001.

[FSSS11] Rina Foygel, Ohad Shamir, Nati Srebro, and Ruslan R
Salakhutdinov. Learning with the weighted trace-norm
under arbitrary sampling distributions. In Advances in
Neural Information Processing Systems, pages 2133–2141,
2011.

[GHJY15a] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan.
Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Conference on Learning
Theory, pages 797–842, 2015.

[GHJY15b] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan.
Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Conf. Learning Theory
(COLT), 2015.

[GJZ17a] Rong Ge, Chi Jin, and Yi Zheng. No spurious local
minima in nonconvex low rank problems: A unified
geometric analysis. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1233–
1242. JMLR. org, 2017.

[GJZ17b] Rong Ge, Chi Jin, and Yi Zheng. No spurious local
minima in nonconvex low rank problems: A unified
geometric analysis. arXiv preprint arXiv:1704.00708, 2017.

[GLM16a] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix com-
pletion has no spurious local minimum. In Advances in
Neural Information Processing Systems, pages 2973–2981,
2016.

[GLM16b] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix com-
pletion has no spurious local minimum. In Advances in
Neural Information Processing Systems (NIPS), 2016.

[GLM18] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-
hidden-layer neural networks with landscape design. In
ICLR. arXiv preprint arXiv:1711.00501, 2018.

[GLSS18] Suriya Gunasekar, Jason Lee, Daniel Soudry, and
Nathan Srebro. Characterizing implicit bias in terms of
optimization geometry. arXiv preprint arXiv:1802.08246,
2018.

bibliography 123

[GMS05] Anna C Gilbert, S Muthukrishnan, and Martin Strauss.
Improved time bounds for near-optimal sparse Fourier
representations. In Optics & Photonics 2005, pages
59141A–59141A. International Society for Optics and
Photonics, 2005.

[GWB+
17] Suriya Gunasekar, Blake E Woodworth, Srinadh Bho-

janapalli, Behnam Neyshabur, and Nati Srebro. Implicit
regularization in matrix factorization. In Advances in
Neural Information Processing Systems, pages 6151–6159,
2017.

[HHS17] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generalization gap
in large batch training of neural networks. In Advances in
Neural Information Processing Systems, 2017.

[HIKP12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric
Price. Nearly optimal sparse Fourier transform. In
Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 563–578. ACM, 2012.

[HMR18] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient
descent learns linear dynamical systems. In JLMR. arXiv
preprint arXiv:1609.05191, 2018.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums
of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[HR16] Ishay Haviv and Oded Regev. The restricted isometry
property of subsampled Fourier matrices. In SODA,
pages 288–297. arXiv preprint arXiv:1507.01768, 2016.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima.
Neural Computation, 1997.

[IK14] Piotr Indyk and Michael Kapralov. Sample-optimal
Fourier sampling in any constant dimension. In Founda-
tions of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 514–523. IEEE, 2014.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning (ICML), pages 448–456, 2015.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization

124 theory of deep learning

in neural networks. In Advances in neural information
processing systems, pages 8571–8580, 2018.

[JGN+
17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade,

and Michael I Jordan. How to escape saddle points
efficiently. arXiv preprint arXiv:1703.00887, 2017.

[Kap16] Michael Kapralov. Sparse Fourier transform in any con-
stant dimension with nearly-optimal sample complexity
in sublinear time. In Symposium on Theory of Computing
Conference, STOC’16, Cambridge, MA, USA, June 19-21,
2016, 2016.

[Kaw16] Kenji Kawaguchi. Deep learning without poor local
minima. In Adv in Neural Information Proc. Systems
(NIPS), 2016.

[KGC17] Jan Kukavcka, Vladimir Golkov, and Daniel Cremers.
Regularization for deep learning: A taxonomy. arXiv
preprint arXiv:1710.10686, 2017.

[KKSK11] Sham M Kakade, Varun Kanade, Ohad Shamir, and
Adam Kalai. Efficient learning of generalized linear and
single index models with isotonic regression. In Advances
in Neural Information Processing Systems, pages 927–935,
2011.

[KMN+
16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-

cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization
gap and sharp minima. In International Conference on
Learning Representations, 2016.

[KS09] Adam Tauman Kalai and Ravi Sastry. The isotron
algorithm: High-dimensional isotonic regression. In
COLT. Citeseer, 2009.

[KST09] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari.
On the complexity of linear prediction: Risk bounds,
margin bounds, and regularization. In Advances in neural
information processing systems, 2009.

[KVZ19] Michael Kapralov, Ameya Velingker, and Amir Zandieh.
Dimension-independent sparse Fourier transform. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2709–2728. SIAM, 2019.

[LMAPH19] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-
Pineda, and Radu Horaud. A comprehensive analysis of

bibliography 125

deep regression. IEEE transactions on pattern analysis and
machine intelligence, 2019.

[LMZ18] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algo-
rithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations.
In Conference On Learning Theory, pages 2–47, 2018.

[LSJR16] Jason D Lee, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. Gradient descent converges to minimiz-
ers. arXiv preprint arXiv:1602.04915, 2016.

[MA19] Poorya Mianjy and Raman Arora. On dropout and
nuclear norm regularization. In International Conference
on Machine Learning, 2019.

[MAV18] Poorya Mianjy, Raman Arora, and Rene Vidal. On the
implicit bias of dropout. In International Conference on
Machine Learning, pages 3537–3545, 2018.

[McA99] David A McAllester. Some pac-bayesian theorems.
Machine Learning, 37(3):355–363, 1999.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet
Talwalkar. Foundations of machine learning. MIT press,
2018.

[Ney17] Behnam Neyshabur. Implicit regularization in deep
learning. arXiv preprint arXiv:1709.01953, 2017.

[NH92] Steven J Nowlan and Geoffrey E Hinton. Simplify-
ing neural networks by soft weight-sharing. Neural
computation, 4(4):473–493, 1992.

[NSS15] Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati
Srebro. Path-sgd: Path-normalized optimization in
deep neural networks. In Advances in Neural Information
Processing Systems, pages 2422–2430, 2015.

[NSW19] Vasileios Nakos, Zhao Song, and Zhengyu Wang.
(Nearly) Sample-optimal sparse Fourier transform
in any dimension; RIPless and Filterless. In FOCS.
https://arxiv.org/pdf/1909.11123.pdf, 2019.

[NTS15a] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
In search of the real inductive bias: On the role of
implicit regularization in deep learning. In International
Conference on Learning Representations, 2015.

https://arxiv.org/pdf/1909.11123.pdf

126 theory of deep learning

[NTS15b] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
Norm-based capacity control in neural networks. In
Conference on Learning Theory, pages 1376–1401, 2015.

[NY83] A. Nemirovskii and D. Yudin. Problem complexity and
method efficiency in optimization. Wiley, 1983.

[PKCS17] Dohyung Park, Anastasios Kyrillidis, Constantine Cara-
manis, and Sujay Sanghavi. Non-square matrix sensing
without spurious local minima via the burer-monteiro
approach. In AISTATS. arXiv preprint arXiv:1609.03240,
2017.

[RDS04] Cynthia Rudin, Ingrid Daubechies, and Robert E
Schapire. The dynamics of adaboost: Cyclic behav-
ior and convergence of margins. Journal of Machine
Learning Research, 5(Dec):1557–1595, 2004.

[RV08] Mark Rudelson and Roman Vershynin. On sparse re-
construction from Fourier and Gaussian measurements.
Communications on Pure and Applied Mathematics: A Jour-
nal Issued by the Courant Institute of Mathematical Sciences,
61(8):1025–1045, 2008.

[SF12] Robert E Schapire and Yoav Freund. Boosting: Founda-
tions and algorithms. MIT press, 2012.

[SHK+
14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research (JMLR), 15(1), 2014.

[SHS17] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The
implicit bias of gradient descent on separable data. arXiv
preprint arXiv:1710.10345, 2017.

[Smi18] Le Smith, Kindermans. Don’t Decay the Learning Rate,
Increase the Batch Size. In ICLR, 2018.

[SQW16a] Ju Sun, Qing Qu, and John Wright. Complete dictionary
recovery over the sphere i: Overview and the geometric
picture. IEEE Transactions on Information Theory, 63(2):853–
884, 2016.

[SQW16b] Ju Sun, Qing Qu, and John Wright. A geometric analysis
of phase retrieval. In IEEE International Symposium on
Information Theory (ISIT), pages 2379–2383, 2016.

bibliography 127

[SQW18] Ju Sun, Qing Qu, and John Wright. A geometric anal-
ysis of phase retrieval. Foundations of Computational
Mathematics, 18(5):1131–1198, 2018.

[SS10] Nathan Srebro and Ruslan R Salakhutdinov. Collabora-
tive filtering in a non-uniform world: Learning with the
weighted trace norm. In Advances in Neural Information
Processing Systems, pages 2056–2064, 2010.

[SSS10] Shai Shalev-Shwartz and Yoram Singer. On the equiva-
lence of weak learnability and linear separability: New
relaxations and efficient boosting algorithms. Machine
learning, 2010.

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-
parametrization via matrix chernoff bound. arXiv preprint
arXiv:1906.03593, 2019.

[Tel13] Matus Telgarsky. Margins, shrinkage, and boosting.
arXiv preprint arXiv:1303.4172, 2013.

[Tro15] Joel A Tropp. An introduction to matrix concentration
inequalities. Foundations and Trends® in Machine Learning,
8(1-2):1–230, 2015.

[WRS+17] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati
Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In
Advances in Neural Information Processing Systems, 2017.

[ZBH+
16a] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[ZBH+
16b] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[ZY+
05] Tong Zhang, Bin Yu, et al. Boosting with early stopping:

Convergence and consistency. The Annals of Statistics,
2005.

	Basic Setup and some math notions
	List of useful math facts

	Basics of Optimization
	Gradient descent
	Stochastic gradient descent
	Accelerated Gradient Descent
	Local Runtime Analysis of GD

	Backpropagation and its Variants
	Problem Setup
	Backpropagation (Linear Time)
	Auto-differentiation
	Notable Extensions

	Basics of generalization theory
	Some simple bounds on generalization error
	Data dependent complexity measures
	PAC-Bayes bounds

	Advanced Optimization notions
	Algorithmic Regularization
	Linear models in regression: squared loss
	Matrix factorization
	Linear Models in Classification
	Homogeneous Models with Exponential Tailed Loss
	Induced bias in function space

	Tractable Landscapes for Nonconvex Optimization
	Preliminaries and challenges in nonconvex landscapes
	Cases with a unique global minimum
	Symmetry, saddle points and locally optimizable functions
	Case study: top eigenvector of a matrix

	Ultra-wide Neural Networks and Neural Tangent Kernel
	Evolving Equation on Predictions
	Coupling Ultra-wide Neural Networks and NTK
	Explaining Optimization and Generalization of Ultra-wide Neural Networks via NTK
	NTK formula for Multilayer Fully-connected Neural Network
	NTK in Practice
	Exercises

	Inductive Biases due to Algorithmic Regularization
	Matrix Sensing
	Deep neural networks
	Landscape of the Optimization Problem
	Role of Parametrization

	Unsupervised learning: Overview
	Training Objective for Density estimation: Log Likelihood
	Variational methods
	Autoencoders
	Variational Autoencoder (VAE)
	Main open question

	Generative Adversarial Nets
	Basic definitions

	Representation Learning
	Adversarial Machine Learning

	Examples of Theorems, Proofs, Algorithms, Tables, Figures
	Example of Theorems and Lemmas
	Example of Long Equation Proofs
	Example of Algorithms
	Example of Figures
	Example of Tables
	Exercise

	Bibliography

